72 research outputs found

    Lose the plot: cost-effective survey of the Peak Range, central Queensland

    Get PDF
    The Peak Range (22˚ 28’ S; 147˚ 53’ E) is an archipelago of rocky peaks set in grassy basalt rolling-plains, east of Clermont in central Queensland. This report describes the flora and vegetation based on surveys of 26 peaks. The survey recorded all plant species encountered on traverses of distinct habitat zones, which included the ‘matrix’ adjacent to each peak. The method involved effort comparable to a general flora survey but provided sufficient information to also describe floristic association among peaks, broad habitat types, and contrast vegetation on the peaks with the surrounding landscape matrix. The flora of the Peak Range includes at least 507 native vascular plant species, representing 84 plant families. Exotic species are relatively few, with 36 species recorded, but can be quite prominent in some situations. The most abundant exotic plants are the grass Melinis repens and the forb Bidens bipinnata. Plant distribution patterns among peaks suggest three primary groups related to position within the range and geology. The Peak Range makes a substantial contribution to the botanical diversity of its region and harbours several endemic plants among a flora clearly distinct from that of the surrounding terrain. The distinctiveness of the range’s flora is due to two habitat components: dry rainforest patches reliant upon fire protection afforded by cliffs and scree, and; rocky summits and hillsides supporting xeric shrublands. Plants endemic to the Peak Range are mainly associated with the latter of these habitats

    Myrtle rust surveys of Eastern Australia

    Get PDF
    Records of Rhodomyrtus psidioides and their level of myrtle rust damage from Eastern Australia from field survey and personal communication with experts

    Quantifying the impact of Gambusia holbrooki on the extinction risk of the critically endangered red-finned blue-eye

    Get PDF
    Managing competing endangered and invasive species in spatially structured environments is challenging because it is often difficult to control invasive species without negatively impacting the endangered species. Effective management action requires an understanding of the factors affecting the presence and absence of each species so that promising sites for relocation of endangered species combined with eradication of invasive species can be identified. We investigate competing hypotheses about the factors affecting occupancy of the critically endangered red-finned blue-eye (Scaturiginichthys vermeilipinnis; hereafter 'RFBE'), a native Australian fish with a global distribution that is restricted to a group of shallow artesian springs. RFBE are threatened by competition with invasive mosquito fish (Gambusia holbrooki ), which are steadily colonizing the springs, resulting in local extinctions of RFBE in most cases. While hypotheses about the influences of Gambusia on RFBE exist, none have been tested with a quantitative model. We used a spatially-structured two-species occupancy modeling approach to examine the occupancy dynamics of these fish and tested competing hypotheses on how Gambusia occupancy affected RFBE. Gambusia occupancy had a strong negative effect on RFBE occupancy and colonization potential; increasing the probability of local extinction at a spring and decreasing the persistence probability of RFBE in a spring by 8.0%± 2.7% (mean ± 1 SE). We found strongest support for the hypotheses that elevation and spring area influence colonization, and that spring area influences patch extinction probability. Using colonization and local extinction estimates for both species, we identify promising sites for eradication of Gambusia and relocation of RFBE

    Agricultural legacy, climate, and soil influence the restoration and carbon potential of woody regrowth in Australia

    Get PDF
    Opportunities for dual restoration and carbon benefits from naturally regenerating woody ecosystems in agricultural landscapes have been highlighted recently. The restoration capacity of woody ecosystems depends on the magnitude and duration of ecosystem modification, i.e., the ''agricultural legacy.'' However, this legacy may not influence carbon sequestration in the same way as restoration because carbon potential depends primarily on biomass accumulation, with little consideration of other attributes and functions of the ecosystem. Our present study simultaneously assesses the restoration and carbon potential of Acacia harpophylla regrowth, an extensive regrowth ecosystem in northeastern Australia. We used a landscape-scale survey of A. harpophylla regrowth to test the following hypotheses: (1) management history, in combination with climatic and edaphic factors, has long-term effects on stem densities, and (2) higher-density stands have lower restoration and carbon potential, which is also influenced by climatic and edaphic factors. We focused on the restoration of forest structure, which was characterized using stem density, aboveground biomass, stem heights, and stem diameters. Data were analyzed using multilevel models within the hierarchical Bayesian model (HBM) framework. We found strong support for both hypotheses. Repeated attempts at clearing Brigalow (A. harpophylla ecosystem) regrowth increases stem densities, and these densities remain high over the long term, particularly in high-rainfall areas and on gilgaied, high-clay soils (hypothesis 1). In models testing hypothesis 2, interactions between stem density and stand age indicate that higher-density stands have slower biomass accumulation and structural development in the long term. After accounting for stem density and stand age, annual rainfall had a positive effect on biomass accumulation and structural development. Other climate and soil variables were retained in the various models but had weaker effects. Spatial extrapolations of the HBMs indicated that the central and eastern parts of the study region are most suitable for biomass accumulation; however, these may not correspond to the areas that historically supported the highest biomass Brigalow forests. We conclude that carbon and restoration goals are largely congruent within areas of similar climate. At the regional scale, however, spatial prioritization of restoration and carbon projects may only be aligned where carbon benefits will be high. © 2010 by the Ecological Society of America

    Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

    Get PDF
    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, since trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of above-ground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period, and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. Since climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus over-built during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes to forest distribution and function from regional to global scales

    An evaluation of the ALOS PALSAR L-band backscatter—Above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure

    Get PDF
    Focusing on woody vegetation in Queensland, Australia, the study aimed to establish whether the relationship between Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR (PALSAR) HH and HV backscattering coefficients and above ground biomass (AGB) was consistent within and between structural formations (forests, woodlands and open woodlands, including scrub). Across these formations, 2781 plot-based measurements (from 1139 sites) of tree diameters by species were collated, from which AGB was estimated using generic allometric equations. For Queensland, PALSAR fine beam dual (FBD) 50 m strip data for 2007 were provided through the Japanese Space Exploration Agency’s (JAXA) Kyoto and Carbon (K&C) Initiative, with up to 3 acquisitions available for each Reference System for Planning (RSP) paths. When individual strips acquired over Queensland were combined, ‘banding’ was evident within the resulting mosaics, with this attributed to enhanced L-band backscatter following rainfall events in some areas. Reference to Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data indicated that strips with enhanced L-band backscatter corresponded to areas with increased effective vegetation water content kg m and, to a lesser extent, soil moisture g cm . Regardless of moisture conditions, L-band HV topographically normalized backscattering intensities backscatter increased asymptotically with AGB, with the saturation level being greatest for forests and least for open woodlands. However, under conditions of relative maximum surface moisture, L-band HV and HH was enhanced by as much as 2.5 and 4.0 dB respectively, particularly for forests of lower AGB, with this resulting in an overall reduction in dynamic range. The saturation level also reduced at L-band HH for forests and woodlands but remained similar for open woodlands. Differences in the rate of increase in both L-band HH and HV with AGB were observed between forests and the woodland categories (for both relatively wet and dry conditions) with these attributed, in part, to differences in the size class distribution and stem density between non-remnant (secondary) forests and remnant woodlands of lower AGB. The study concludes that PALSAR data acquired when surface moisture and rainfall are minimal allow better estimation of the AGB of woody vegetation and that retrieval algorithms ideally need to consider differences in surface moisture conditions and vegetation structure

    Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area

    Get PDF
    Drought events are increasing globally, and reports of consequent forest mortality are widespread. However, due to a lack of a quantitative global synthesis, it is still not clear whether drought-induced mortality rates differ among global biomes and whether functional traits influence the risk of drought-induced mortality. To address these uncertainties, we performed a global meta-analysis of 58 studies of drought-induced forest mortality. Mortality rates were modelled as a function of drought, temperature, biomes, phylogenetic and functional groups, and functional traits. We identified a consistent global-scale response, where mortality increased with drought severity (log mortality (trees trees-1 year-1) increased 0.46 (95% CI=0.2-0.7) with one SPEI unit drought intensity). We found no significant differences in the magnitude of the response depending on forest biomes or between angiosperms and gymnosperms or evergreen and deciduous tree species. Functional traits explained some of the variation in drought responses between species (i.e. increased from 30 to 37% when wood density and specific leaf area were included). Tree species with denser wood and lower specific leaf area showed lower mortality responses. Our results illustrate the value of functional traits for understanding patterns of drought-induced tree mortality and suggest that mortality could become increasingly widespread in the future

    A national-scale dataset for threats impacting Australia's imperiled flora and fauna

    Get PDF
    Australia is in the midst of an extinction crisis, having already lost 10% of terrestrial mammal fauna since European settlement and with hundreds of other species at high risk of extinction. The decline of the nation's biota is a result of an array of threatening processes; however, a comprehensive taxon-specific understanding of threats and their relative impacts remains undocumented nationally. Using expert consultation, we compile the first complete, validated, and consistent taxon-specific threat and impact dataset for all nationally listed threatened taxa in Australia. We confined our analysis to 1,795 terrestrial and aquatic taxa listed as threatened (Vulnerable, Endangered, or Critically Endangered) under Australian Commonwealth law. We engaged taxonomic experts to generate taxon-specific threat and threat impact information to consistently apply the IUCN Threat Classification Scheme and Threat Impact Scoring System, as well as eight broad-level threats and 51 subcategory threats, for all 1,795 threatened terrestrial and aquatic threatened taxa. This compilation produced 4,877 unique taxon–threat–impact combinations with the most frequently listed threats being Habitat loss, fragmentation, and degradation (n = 1,210 taxa), and Invasive species and disease (n = 966 taxa). Yet when only high-impact threats or medium-impact threats are considered, Invasive species and disease become the most prevalent threats. This dataset provides critical information for conservation action planning, national legislation and policy, and prioritizing investments in threatened species management and recovery

    Gift of the GAB

    No full text
    • 

    corecore