407 research outputs found

    Vegetation-soil relations in a highly sodic landscape, Yelarbon, southern Queensland

    Get PDF
    Soil and vegetation data were collected from a sodic-scald near Yelarbon in southern Queensland. The surface of the landscape includes relatively light textured pedestals of the A-horizon with slightly alkaline pH and slopes leading down to scalded basement representing the surface of the strongly alkaline B-horizon. The strongest gradient within the floristic patterns was associated with wetland vegetation in drainage lines, but a secondary and orthogonal gradient was related to soil pH, which was probably a function of lower alkalinity on the more stable and weathered A-horizons. There were few significant differences between soil or vegetation characteristics from plot data comparing parts of the landscape with differing historical grazing regimes. Sites included stock routes heavily grazed between the 1920s and 1970s, and subsequently almost ungrazed; and grazed paddocks that have had moderate use throughout this period. There is clear evidence that the area is naturally active in terms of erosion and deposition during flooding regardless of grazing

    Conrad Martens and the Bush of South-east Queensland

    Get PDF

    Potential aboveground biomass in drought-prone forest used for rangeland pastoralism

    Get PDF
    The restoration of cleared dry forest represents an important opportunity to sequester atmospheric carbon. In order to account for this potential, the influences of climate, soils, and disturbance need to be deciphered. A data set spanning a region defined the aboveground biomass of mulga (Acacia aneura) dry forest and was analyzed in relation to climate and soil variables using a Bayesian model averaging procedure. Mean annual rainfall had an overwhelmingly strong positive effect, with mean maximum temperature (negative) and soil depth (positive) also important. The data were collected after a recent drought, and the amount of recent tree mortality was weakly positively related to a measure of three-year rainfall deficit, and maximum temperature (positive), soil depth (negative), and coarse sand (negative). A grazing index represented by the distance of sites to watering points was not incorporated by the models. Stark management contrasts, including grazing exclosures, can represent a substantial part of the variance in the model predicting biomass, but the impact of management was unpredictable and was insignificant in the regional data set. There was no evidence of density-dependent effects on tree mortality. Climate change scenarios represented by the coincidence of historical extreme rainfall deficit with extreme temperature suggest mortality of 30.1% of aboveground biomass, compared to 21.6% after the recent (2003-2007) drought. Projections for recovery of forest using a mapping base of cleared areas revealed that the greatest opportunities for restoration of aboveground biomass are in the higher-rainfall areas, where biomass accumulation will be greatest and droughts are less intense. These areas are probably the most productive for rangeland pastoralism, and the trade-off between pastoral production and carbon sequestration will be determined by market forces and carbon-trading rules

    Managed livestock grazing is compatible with the maintenance of plant diversity in semidesert grasslands.

    Get PDF
    Even when no baseline data are available, the impacts of 150 years of livestock grazing on natural grasslands can be assessed using a combined approach of grazing manipulation and regional-scale assessment of the flora. Here, we demonstrate the efficacy of this method across 18 sites in the semidesert Mitchell grasslands of northeastern Australia. Fifteen-year-old exclosures (ungrazed and macropod grazed) revealed that the dominant perennial grasses in the genus Astrebla do not respond negatively to grazing disturbance typical of commercial pastoralism. Neutral, positive, intermediate, and negative responses to grazing disturbance were recorded amongst plant species with no single life-form group associated with any response type. Only one exotic species, Cenchrus ciliaris, was recorded at low frequency. The strongest negative response was from a native annual grass, Chionachne hubbardiana, an example of a species that is highly sensitive to grazing disturbance. Herbarium records revealed only scant evidence that species with a negative response to grazing have declined through the period of commercial pastoralism. A regional analysis identified 14 from a total of 433 plant species in the regional flora that may be rare and potentially threatened by grazing disturbance. However, a targeted survey precluded grazing as a cause of decline for seven of these based on low palatability and positive responses to grazing and other disturbance. Our findings suggest that livestock grazing of semidesert grasslands with a short evolutionary history of ungulate grazing has altered plant composition, but has not caused declines in the dominant perennial grasses or in species richness as predicted by the preceding literature. The biggest impact of commercial pastoralism is the spread of woody leguminous trees that can transform grassland to thorny shrubland. The conservation of plant biodiversity is largely compatible with commercial pastoralism provided these woody weeds are controlled, but reserves strategically positioned within water remote areas are necessary to protect grazing-sensitive species. This study demonstrates that a combination of experimental studies and regional surveys can be used to understand anthropogenic impacts on natural ecosystems where reference habitat is not available

    Vegetation responses to the first 20 years of cattle grazing in an Australian desert

    Get PDF
    Existing theoretical frameworks suggest three predictions relevant to grazing effects in Australian aridlands: grazing has a negative but moderate effect on plant species richness; a separate "state" resulting from degradation caused by extreme grazing will be evident; some plant species will have a strong association with grazing relief refuges that have only ever been subject to light grazing. These predictions were examined in the dune swales of an Australian desert, with data on herbaceous species collected along transects up to 14 km from artificial water points between four and 33 years old. A cumulative grazing index was constructed utilizing both the spatial occupation patterns of cattle and the length of exposure. Despite restricting sampling to a narrow habitat, silt/clay content and soil pH influence floristic patterns independent of grazing. The analysis of quadrat data in relation to grazing revealed almost no patterns in plant cover, species richness (at two different scales), or abundance across plant life-form groups. Five species had an increasing response, and seven a decreasing response, while the only species restricted to areas of extremely low grazing pressure was sufficiently rare that it could have occurred there by chance. The dominant annual grass, the most common shrub, and a perennial tussock-forming sedge all decrease with high levels of grazing. Most species exhibit an ephemeral life strategy in response to unreliable rainfall, and this boom and bust strategy effectively doubles as an adaptation to grazing. After 20 years of exposure to managed grazing with domestic stock in Australian dune swales, patterns in species richness have not emerged in response to grazing pressure, the ecosystem has not been transformed to another degradation "state," and there is no evidence that grazing relief refuges provide havens for species highly sensitive to grazing

    Urgent plea for global protection of springs

    Get PDF
    Springs, keystone ecosystems, are rapidly disappearing mainly due to overexploitation, and need global protection

    Rainfall-Linked Megafires as Innate Fire Regime Elements in Arid Australian Spinifex (Triodia spp.) Grasslands

    Get PDF
    Large, high-severity wildfires, or "megafires," occur periodically in arid Australian spinifex (Triodia spp.) grasslands after high rainfall periods that trigger fuel accumulation. Proponents of the patch-burn mosaic (PBM) hypothesis suggest that these fires are unprecedented in the modern era and were formerly constrained by Aboriginal patch burning that kept landscape fuel levels low. This assumption deserves scrutiny, as evidence from fire-prone systems globally indicates that weather factors are the primary determinant behind megafire incidence, and that fuel management does not mitigate such fires during periods of climatic extreme. We reviewed explorer's diaries, anthropologist's reports, and remotely sensed data from the Australian Western Desert for evidence of large rainfall-linked fires during the pre-contact period when traditional Aboriginal patch burning was still being practiced. We used only observations that contained empiric estimates of fire sizes. Concurrently, we employed remote rainfall data and the Oceanic Niño Index to relate fire size to likely seasonal conditions at the time the observations were made. Numerous records were found of small fires during periods of average and below-average rainfall conditions, but no evidence of large-scale fires during these times. By contrast, there was strong evidence of large-scale wildfires during a high-rainfall period in the early 1870s, some of which are estimated to have burnt areas up to 700,000 ha. Our literature review also identified several Western Desert Aboriginal mythologies that refer to large-scale conflagrations. As oral traditions sometimes corroborate historic events, these myths may add further evidence that large fires are an inherent feature of spinifex grassland fire regimes. Overall, the results suggest that, contrary to predictions of the PBM hypothesis, traditional Aboriginal burning did not modulate spinifex fire size during periods of extreme-high arid zone rainfall. The mechanism behind this is that plant assemblages in seral spinifex vegetation comprise highly flammable non-spinifex tussock grasses that rapidly accumulate high fuel loads under favorable precipitation conditions. Our finding that fuel management does not prevent megafires under extreme conditions in arid Australia has parallels with the primacy of climatic factors as drivers of megafires in the forests of temperate Australia

    Random and systematic sampling error when hooking fish to monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden in Australian farmed yellowtail kingfish (Seriola lalandi)

    Get PDF
    © 2018 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license:http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (February 2018) in accordance with the publisher’s archiving policyThe Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06–16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios
    • …
    corecore