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Abstract. Existing theoretical frameworks suggest three predictions relevant to grazing
effects in Australian aridlands: grazing has a negative but moderate effect on plant species
richness; a separate ‘‘state’’ resulting from degradation caused by extreme grazing will be
evident; some plant species will have a strong association with grazing relief refuges that have
only ever been subject to light grazing. These predictions were examined in the dune swales of
an Australian desert, with data on herbaceous species collected along transects up to 14 km
from artificial water points between four and 33 years old. A cumulative grazing index was
constructed utilizing both the spatial occupation patterns of cattle and the length of exposure.
Despite restricting sampling to a narrow habitat, silt/clay content and soil pH influence
floristic patterns independent of grazing. The analysis of quadrat data in relation to grazing
revealed almost no patterns in plant cover, species richness (at two different scales), or
abundance across plant life-form groups. Five species had an increasing response, and seven a
decreasing response, while the only species restricted to areas of extremely low grazing
pressure was sufficiently rare that it could have occurred there by chance. The dominant
annual grass, the most common shrub, and a perennial tussock-forming sedge all decrease
with high levels of grazing. Most species exhibit an ephemeral life strategy in response to
unreliable rainfall, and this boom and bust strategy effectively doubles as an adaptation to
grazing. After 20 years of exposure to managed grazing with domestic stock in Australian
dune swales, patterns in species richness have not emerged in response to grazing pressure, the
ecosystem has not been transformed to another degradation ‘‘state,’’ and there is no evidence
that grazing relief refuges provide havens for species highly sensitive to grazing.

Key words: aridlands; desert; grazing; Simpson Desert, Australia; state and transition models; water
remoteness.

INTRODUCTION

The effects of disturbance on species richness are a

product of colonization opportunities and extinction

likelihood (Olff and Ritchie 1988). In productive grass-

land, colonization and persistence may be mediated with

competitive exclusion by dominant perennial grasses,

particularly where these species are palatable (Pacala and

Crawley 1992). With the removal of grazing, the dom-

inant perennial species occupy space that would other-

wise be available for sub-dominant species, many of

which are ephemeral. As grazing pressure intensifies,

species richness declines because of the extinction of

palatable species. This conceptual framework for grazing

systems mirrors the more general ‘‘intermediate distur-

bance hypothesis’’ (Grime 1973, Connell 1978).

The generality of grazing responses in plant commu-

nities has been examined (Milchunas et al. 1988) and

clarified by Cingolani et al. (2005), suggesting that where

evolutionary exposure to grazing by large mammals has

been short and resources are limited (such as in

Australian arid lands), declines in diversity with heavy

grazing will be more pronounced than in environments

with a history of greater exposure. However, declines will

still only be moderate under low rainfall because

preadaptation of plant species to resource limitations

also confers grazing resilience (Cingolani et al. 2005).

Modal responses to grazing are not expected in arid

lands because resource limitations preclude dominance

by any species. Some studies (Stohlgren et al. 1999,

Kohyani et al. 2008) have demonstrated that response

patterns are scale-dependent and that the relationship

between grazing and species richness is more prevalent at

small spatial scales than at large spatial scales. In

Australian arid lands the impact of grazing may be

particularly acute where there are fertile areas that

provide important sources of scarce nutrients within the

general matrix of an ancient and highly weathered

continent (Stafford Smith and Morton 1990), and there

is a general presumption that exposure to grazing over

evolutionary timescales has been relatively low (Milchu-

nas and Lauenroth 1993, Morton et al. 1995, Diı́az et al.

2007).

State and transition models suggest that grazing

responses may be expressed differently within separate
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degradation ‘‘states’’ (Walker et al. 1981, Westoby et al.

1989). This framework predicts that ecosystems can be

driven over the thresholds defining states such that

return to the original state cannot be reversed by the

short-term removal of herbivores. The diagnosis of

states and thresholds is not a simple task (Bestelmeyer et

al. 2003), but evidence can include abrupt changes in

community composition (Sasaki et al. 2008), alteration

of soil conditions (Elwell and Stocking 1976, van de

Koppel et al. 1997), and the depletion of the soil seed

bank (Sternberg et al. 2003, Kinloch and Friedel 2005).

The transit to a new degradation state has been used to

account for negligible differences in a study incorporat-

ing exclosures in arid environments with a long history

of livestock grazing (Valone et al. 2002). Within a grazed

ecosystem, a degradation state should become apparent

in the immediate vicinity of stock watering points where

intense grazing and other impacts of herbivores have

been recorded to have profound effects on vegetation

and soils (Friedel 1997, Turner 1998, Tongway et al.

2003, Smet and Ward 2006).

In many of the world’s arid rangelands, grazing by

domestic stock is limited by the availability of drinking

water (James et al. 1999, Redfern et al. 2003, Smit et al.

2007, Fensham and Fairfax 2008). In this context

‘‘water-remoteness gradients’’ provide a valuable oppor-

tunity to study the effects of grazing on plant species

composition (Andrew 1988, Fensham and Fairfax 2008).

In arid Australia, where there has been a relatively light

evolutionary history of grazing, only a short history of

domestic stock grazing, and there are large areas that do

not have natural water, it is proposed that water-remote

areas act as grazing relief refuges that could provide

havens for grazing-sensitive species (Landsberg et al.
2003). This framework predicts that there will be a suite

of species with strong associations to areas subject to
only light grazing.

There are logistic problems with employing water-
remoteness gradients to examine species responses

(Pringle and Landsberg 2004). In many arid-land
environments the artificial water points are now so
abundant that water-remoteness gradients more than 6

km do not exist (Fensham and Fairfax 2008). Other
studies have been hampered by the confounding effects

of ephemeral water (Friedel et al. 2003), a variety of soil
types (Smit et al. 2007), the limited statistical power in

studies without adequate sample size in a single location
(Ludwig et al. 1999) or spread over a broad geographic

range (Landsberg et al. 2003), and the effects of drought-
tolerant native herbivores (Montague-Drake and Croft

2004). In addition there are substantial limitations on
adequate identification of ephemeral flora, unless sam-

pling can be timed to coincide with rare rainfall events.
What is more, most studies have not considered the

grazing impacts related to the age of watering points,
which has been shown to be an important predictor of

sheep track density in Australian rangeland (Pringle and
Landsberg 2004), although Hunt (2001) has described
the cumulative effects on some key species over short

gradients. The limitations are overcome here by exam-
ining species responses and patterns in diversity and

richness within a framework of multiple water-remote-
ness gradients, within a single selectively grazed land

type, incorporating both spatial impacts and grazing
history. The gradients represent a spectrum including

heavy grazing around water points, but extend to areas
subject to negligible grazing pressure.

It may be possible to refine generalizations about
grazing responses, but this will require carefully con-

trolled studies within clearly defined positions along
rainfall–productivity, evolutionary history of grazing,

and other gradients (Vesk et al. 2004). The current study
combines spatial and temporal measures of grazing

impact in the arid environment of the Simpson Desert,
Australia, in fertile habitats within a matrix of infertile

habitat, where the evolutionary history of grazing is
light and intensive grazing relatively recent. The study

specifically addresses three predictions that arise from
the emerging theoretical frameworks that apply to
grazing impacts on arid vegetation: (1) plant species

richness will exhibit a negative but moderate decrease
with grazing; (2) there will be evidence of a separate

degradation state within the impact zone of water
points; and (3) a suite of plant species will be restricted

to grazing relief refuges.

METHODS

Study area

The study was conducted on two large pastoral

properties (238200 S, 1388300 E) in the eastern Simpson

FIG. 1. Linear dunes in the eastern Simpson Desert,
Australia, with locations of sites (circles), the locations of
water-points (crosses), annotated with the year they were
established, and property boundaries.
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Desert in western Queensland, Australia (Fig. 1). Mean

annual rainfall in this area is 130–150 mm per annum,

although only eight times per century is rainfall more

than double the average (Bureau of Meteorology,

unpublished data). Parallel linear sand dunes rise to 5–

20 m height, with ;400–2000 m distance between dune

crests, and with flat dune swales forming the majority of

the land area. Sampling was conducted within dune

swales that have not been buried by wind-blown sand

(indicated by the absence of the spinifex grass Triodia

basedowii ), where gidgee (Acacia georginae) formed a

very open woodland, and where rock cover was ,3%

(see Appendix A for photographs of the habitat). These

areas are characterized by a very low proportion of

coarse sand (,0.18 mm) and have higher fertility than

the dunes (Crocker 1946, Buckley 1982b). The dune

swales targeted for sampling compose ;50% of the dune

fields and are favored by cattle, acting as fertile islands

within the broad infertile landscape. As such they should

be particularly vulnerable to degradation by grazing

(Stafford Smith and Morton 1990).

Large marsupial herbivores only occur at low density,

and rabbits have never occurred in sufficiently high

numbers to have had a major impact (Letnic and

Dickman 2006). Feral camels are present but have

densities ,0.03 camels/km2 (Short et al. 1988). Grazing

by domestic cattle only occurred sporadically when stray

animals walked long distances during the brief periods

when there was ephemeral water. Thus the study area

was subject to only light and intermittent grazing prior to

intensive managed cattle grazing facilitated by the

sinking of bores in the 1980s (Fig. 1) and the establish-

ment of fenced paddocks that only include the dune

fields. When pastures have been exhausted during

protracted dry periods, stocking rates are reduced. One

of the properties tended to use the water points se-

quentially, exhausting forage around a group of water

points before utilizing pastures around another set of

water points. The other property tended to use the water

points all at once until the lack of forage resource forced

destocking. The maximum time that any bore had not

provided water for cattle was two years.

Field sampling

Sampling was conducted duringMarch 2007, when the

area had received more than 300–430 mm of rain during

the preceding three months and conditions for sampling

the herbaceous flora were optimum. Gradients were

selected to represent a range of distances within the first

kilometer of watering points, were spaced roughly every

1 km thereafter, and always included the maximum

accessible distance within the habitat for any particular

water point (Fig. 1). Site selection was constrained by the

availability of target habitat because many swales did not

meet the habitat criteria of gidgee present, spinifex grass

absent, and low rock cover. Sixty-eight sites were located

away from tree crowns on 10 distance-to-water gradients

with maximum distances of 2.2, 3.3, 3.4, 4.2, 4.3, 5.9, 6.0,

9.2, 9.6, and 13.9 km (Fig. 1).

Site sampling was conducted along a 31-m tape line

that provided for the location of regular sampling points

and formed the central axis of a 2 m wide quadrat.

Species present in the first 1 3 2 m section of this larger

quadrat were assigned an abundance of five, additional

species present in the next 23 2 m section were assigned

an abundance of four, the next 43 2 m section three, the

next 8 3 2 m section two, and the final 163 2 m section

one, and if a species was absent it was assigned an

abundance of zero. This method, involving unrepeated

scoring of species presence, has been demonstrated to

provide the best return (robust measure of species

density) for effort (no more time than presence/absence

recording), thereby allowing for a relatively large

quadrat size (Morrison et al. 1995). Voucher specimens

of all species have been lodged at the Queensland

Herbarium (Mt. Coot-tha, Queensland, Australia), and

nomenclature follows Bostock and Holland (2007).

Abutilon fraseri and A. otocarpum and Boerhavia

pubescens and B. repleta were not consistently distin-

guished, and these congenerics were combined for the

analysis.

Grass and forb cover was the mean of visual estimates

from four 50350 cm frames evenly spaced along the 31-

m tape, assuming cover as solid convex polygons over the

vegetative extremities of the plants. Soil was collected

from 1–5 cm depth at each of those four sampling points,

bulked, and then sampled for each site. Particle size of

the samples was determined in three categories: coarse

sand (.250 lm), fine sand (38–250 lm), and silt/clay

(,38 lm). Surface soil pH was determined using a TPS

WP-81 pHmeter (TPS, Brisbane, Queensland, Australia)

with a 1:5 solution. A penetration measure was de-

termined at each of the four sampling points by dropping

a sharpened probe from a standard height and scoring

the depth of penetration. These measures were averaged

for each site to provide a relative value for soil pene-

tration. Cattle dung pats (.8 cm diameter) were counted

in quadrats, centered on the tape but of variable size

(124–620 m2), depending on dung density.

Modeling grazing intensity

Dung counts have been correlated with herbivore

activity (Landsberg and Stol 1996). To accommodate

for patchiness in dung density, sites were grouped into

0.4-km segments along the distance-to-water gradient,

and density was averaged within these segments. The

averaged dung density (10 dung pats/m2) values were

modeled against the midpoint of the segments (i.e., 0.2,

0.6, 1.0, . . . km). A model using a Poisson-link function

of the form ln(dung densityþ1) ;�0.86473 ln(distance

to waterþ 1)þ 2.2318 (multiple R2¼ 0.576) adequately

described the dung data in relation to distance to water,

except for the first 0.4 km, where it provides a sub-

stantial underestimate (Fig. 2). However, it is reasoned

that cattle are spending most of their time in this zone
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drinking or resting rather than grazing, and the function
was not adjusted for these sites that were included in the

analysis. The sites closest to water points on each water-

remoteness gradient are not floristically distinct from

many other sites beyond 0.4 km distance (Fig. 3), and

soil characteristics do not seem to have been dramati-

cally transformed (see Results).

This function was applied to the distance from water

for every site, providing a spatial grazing score. This

score was multiplied by the number of years that the

relevant water points have been used as foci for
commercial grazing and were summed for all water

points that are influencing grazing at a site. Thus if a site

was 1 km from a water point (see Fig. 2) that had been

subject to eight years of grazing (4.12 3 8) and 6 km

from another water point subject to 28 years of grazing

(0.73 3 28), these values were summed to provide the

cumulative grazing index (CGI).

Multivariate analysis and statistical modeling

The site–species abundance data were ordinated by

nonmetric multidimensional scaling after exploratory

analysis suggested that a two-dimensional solution most

accurately represented the data and the environmental

variables. Vector fitting with 99 Monte Carlo tests was

used to determine the direction, strength, and signifi-

cance of the environmental variables through the
ordination space. The relationship between the vectors

was explored using Spearman’s rank correlation coeffi-

cient.

A nonlinear relationship or break in slope between

ordination scores and grazing index has been used to

indicate a ‘‘spatial threshold,’’ or preliminary evidence of

an abrupt change in degradation state (Sasaki et al.

2008). We followed this methodology by plotting actual

CGI scores against the ordination scores along the

vector for CGI scores. The latter define the dimension of

the two-dimensional ordination space that is best

aligned with the CGI and the alignment of the sites

along this vector provides a measure of the floristic

dissimilarity in relation to the CGI.

Silt/clay, cumulative grazing index, and soil pH were

highly significant vectors through the ordination space.

For the 35 species with a frequency greater than nine, we

modeled responses of richness, Shannon diversity, and

abundance (by summing abundance scores) in total and

according to individual life-form groups (Table 1); we

also modeled rare species richness (richness of species

with frequency less than 10). In addition to the large

scale (62 m2), total, annual, and perennial plant species

richness were also modeled at the small scale (2 m2).

Responses were modeled against the explanatory

variables silt/clay content, cumulative grazing index,

and soil pH, both as main effects and in two-way

interactions using the statistics program R (version

2.7.1; R Foundation for Statistical Computing, Vienna,

Austria). Silt/clay values were positively skewed and

were log-transformed.

Grass cover (as a percentage), forb cover (as a

percentage), and diversity were modeled using multiple

linear regression. The cover models displayed consider-

able heteroscedasticity (model residuals increasing with

increasing fitted values) and were improved most

effectively by square-root transformation (grass cover)

and log transformation (forb cover). Richness and the

life-form abundance data were examined for zero

inflation (Warton 2005) and modeled initially using

generalized linear models (GLMs) with Poisson errors

and a log-link function. If the ratio of residual deviance

over residual degrees of freedom was larger than 1.5,

then the model was considered to be over-dispersed and

the quasi-Poisson error structure was employed.

Species abundance data were examined using ordinal

response regression models. Model fit and assumptions

FIG. 2. The function modeling distance to water point vs.
cattle dung density of the form ln(dung densityþ 1) ’�0.8647
3 ln(distance to waterþ 1)þ 2.2318 (multiple R2¼ 0.576). Data
points are the mean dung density for the 0.4-m segments. The
modeled dung density values are used to provide a spatial
grazing score.

FIG. 3. Two-dimensional ordination of floristic data
representing the 68 sites on 10 transects. Sites nearest to the
water point on each gradient (,0.4 km) are represented by the
large diamonds. The different line patterns only serve to
distinguish individual transects.
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were checked graphically following Guisan and Harrell

(2000) and in almost all cases the assumption of

ordinality was not verified. For the less common species

this is due to excessive zero inflation, but for more

common species is due mainly to the U-shaped dis-

tribution of the abundance data, with most records

either in the zero or five categories. Consequently species

abundance classes were converted to presence/absence

data and modeled using logistic regression.

Models were simplified by deletion of the predictor

variables one at a time from the full model, starting with

interactions. Each smaller model was then compared

with the full model using an F test on model vari-

ance/deviance (linear regressions, generalized linear

models with quasi-Poisson errors) or a chi-squared test

on the scaled change in model deviance (generalized

linear models with Poisson errors, logistic regression). If

an interaction was retained, then both main terms

present in that interaction were included in the final

model. Diagnostic plots of model residuals were

inspected to check for violations of model assumptions.

For logistic regression, this involved binning residuals

into 10 groups (approximately seven residuals per

group) and taking mean values per group. A ‘‘percent-

age of improvement’’ diagnostic statistic was also

calculated for logistic models as the proportion of

observations for which fitted model values were greater

or less than 0.5 and in contradiction to the observed

value (1 or 0) (Gelman and Hill 2007), e.g., a fitted value

of 0.2 where the observed value was 1 would be regarded

as erroneous. The statistic yields an approximate

percentage improvement over the null model, which

itself is simply the probability of occurrence given the

observed values. Models of species occurrences that had

low percentage improvement consistently exhibited

obvious departure from model assumptions in diagnos-

tic plots. Response variables (life-form variables or

species presence/absence variables) that had acceptable

model diagnostics included grass cover, forb cover, total

species diversity, annual species diversity, perennial

species diversity, total species richness, annual species

richness, perennial species richness, annual grass rich-

ness, annual grass abundance, perennial forb abun-

dance, rare species richness, total species richness (small-

scale), Amaranthus mitchellii, Aristida contorta, Eragros-

tis dielsii, Eremophila obovata, Fimbristylis dichotoma,

Heliotropium tanythrix, Portulaca intraterranea, Ptilotus

polystachyus, Salsola tragus, Tragus australianus, and

Triraphis mollis. For the remaining variables we

conducted nonparametric Kendall’s tau rank correlation

tests. This test can only be used to test one explanatory

variable at a time and thus is not appropriate for testing

interactions between explanatory variables. For Ken-

dall’s tau correlation tests on species variables we used

species abundance scores.

The response of all species was graphically prepared

and assessed to search for a response that would be

consistent with association with grazing relief refuges.

The cumulative grazing index was ordered and then the

sites were assigned to four equal segments (n ¼ 17).

Analysis of variance was performed on species richness

and diversity with Tukey’s test to determine significant

differences between individual means of each cumulative

grazing index segment.

RESULTS

The data was composed of 102 species from 68 sites,

and there was a range in species richness from 11 to 38

(62 species/m2), with a mean value of 18. Pennsisetum

ciliaris was the only exotic species present (one quadrat).

Sixty-five percent of the species sampled have an annual

life-form (Table 1).

The plots that are within 400 m of the water points

tend to be clustered at one end of the ordination

diagram, although they are not obviously distinct from

other plots (Fig. 3). The lack of consistent direction in

the water-remoteness gradients is expected, given that

transects have varying length and periods of exposure to

intensive cattle grazing. The three strongest vectors

through a two-dimensional ordination space are silt

content (range ¼ 0.21%–4.90%), cumulative grazing

index (range ¼ 0–206), and soil pH (range ¼ 6.09–8.42)

(Fig. 4). Of these three variables, cumulative grazing

index and soil pH were the only two significantly co-

correlated (P , 0.001) because of low soil pH with low

cumulative grazing index (Appendix B). Soil penetration

index (Fig. 4) is significantly and negatively correlated

TABLE 1. Frequency of plant species in all 68 sites in the dune swales of the eastern Simpson
Desert, Australia, number of species occurring in more than nine sites, and species richness
(mean 6 SE) at large (62-m2) and small (2-m2) scales, by life-form group.

Life-form

Frequency of species
Species richness

Total no.
in all sites

No. in
.9 sites Large scale Small scale

Annual grass 22 10 5.1 6 0.2 2.65 6 0.14
Annual forb 44 16 8.6 6 0.4 3.71 6 0.22
Perennial grass 7 1 0.5 6 0.1 0.09 6 0.04
Perennial forb 25 7 2.9 6 0.2 0.76 6 0.10
Shrub 3 1 0.8 6 0.1 0.15 6 0.04
Tree 1 0 0.1 6 0.0 0.01 6 0.01

Total 102 35 18.0 6 0.3 7.37 6 0.30
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with silt content (P , 0.001), positively correlated with

cumulative grazing (P , 0.01), and positively correlated

with soil pH (P , 0.001).

The relationship between cumulative grazing index

and cumulative grazing index vector scores reveals no

evidence of nonlinearity or a break in slope (Fig. 5) as

would be expected if one degradation state was

separated from another by a threshold.

Grass cover, annual grass abundance, and many of

the diversity and richness measures were positively

related to silt/clay content, while forb cover was

negatively related to silt/clay content (Table 2). The

only life-form measures related to the cumulative

grazing index were perennial species richness and

diversity, which had a weakly positive response (Table

2). Rare species richness was not related to the

cumulative grazing index and of the 35 species with a

frequency greater than nine, seven demonstrated a

decreaser response and five an increaser response (Table

2, Fig. 6). For Amaranthus mitchellii and Eragrostis

dielsii there was an interaction between cumulative

grazing index and silt/clay content, whereby the like-

lihood of occurrence with increasing grazing is exagger-

ated by increasing silt/clay content (Appendix D). The

abundance pattern of species significantly responding to

the cumulative grazing index appears to be linear,

although the interpretation of response shape can be

marred by zero abundance values across a wide

spectrum of cumulative grazing index values (Fig. 6).

Examination of individual species responses revealed

little evidence of a negative exponential response shape,

with the herbaceous legume Swainsona microphylla

being the only species with a frequency greater than

four that was restricted to sites (on two transects) within

the low 25th percentile of the cumulative grazing index

(Appendix E).

When species richness variables (Table 2) were

assigned to four segments of the cumulative grazing

index (Fig. 7), a weak modal response pattern was

revealed for total species richness and annual species

richness at both large and small spatial scales, although

there was no significant difference between any of the

categories (P . 0.05). A modal response was not evident

for perennial species and all patterns for species richness

were mirrored for species diversity.

DISCUSSION

This study sought to minimize the influence of the

physical environment by limiting sampling to a narrowly

defined and seemingly homogeneous habitat type.

However, the proportion of silt/clay in the soil, which

was always less than 5% of total soil mass, was more

strongly correlated with trends in species composition

than the cumulative grazing index (Fig. 4, Table 2). The

fine soil fraction has been correlated with nitrogen and

carbon over broader gradients (from swales to dune

crests) in Simpson Desert dune fields (Buckley 1982b)

and also with the abundance of individual species

(Buckley 1982a). The importance of soil factors for

affecting plant composition is also emphasized by the

independent effect of soil pH on species composition

(Fig. 4). The importance of soil characteristics in deter-

mining species composition has been highlighted in

other studies (Stohlgren et al. 1999, Friedel et al. 2003,

Kohyani et al. 2008), but this study identifies that ex-

tremely subtle differences in soil characteristics can have

a more substantial influence on floristic composition

than grazing in arid environments.

There were almost no trends between grazing intensity

and species abundance, richness, and diversity at either

small or large spatial scales. A recent meta-analysis

FIG. 4. Two-dimensional ordination with the direction and
strength (indicated by the length) of environmental vectors. All
vectors have P values greater than 0.001 with maximum R
values as follows: silt/clay, R¼ 0.684; cumulative grazing index,
R ¼ 0.624; soil pH, R ¼ 0.524; soil penetration, R ¼ 0.467.
Cumulative grazing index combines the spatial intensity of
grazing with the length of grazing history.

FIG. 5. Relationship and line of best fit between the
cumulative grazing index (CGI) and the species CGI vector
scores (a measure of the floristic dissimilarity in relation to
CGI) within the ordination space. There is no evidence of a
break in slope identifying a threshold where species composi-
tion represents two separate ‘‘degradation states.’’
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(Dı́az et al. 2007) showed a pattern of increase in

abundance of annual plants with grazing in arid

environments with an evolutionary history of relatively

low exposure to grazing, but this trend was not evident

in this study (Table 2). Perennial species richness and

diversity had a weak positive response to grazing. A

modal distribution pattern for total plant richness and

annual plant richness at both small and large spatial

scales cannot be interpreted as being consistent with the

intermediate-disturbance hypothesis because the lower

values where grazing is minimal do not correspond with

higher abundance, richness, or diversity of perennial

species as would be expected if the perennial species were

excluding annual species through competition. These

results are generally consistent with other analyses from

arid grasslands (Friedel 1997, Adler et al. 2005, Lewis et

al. 2008), but contrasts with patterns described for more

mesic grassland where species richness and diversity

does respond to grazing (Collins and Barber 1985,

Fensham et al. 1999, Frank 2005). Highly variable and

low rainfall does not allow for sufficient dominance by

perennial species to limit the growth of ephemeral

species on the soils in the dune swales. The results do not

support the prediction for a modest negative effect of

grazing on species and diversity in Australian aridlands

(Cingolani et al. 2005) and suggest that any sensitivity of

the Australian flora because of a light evolutionary

exposure to grazing is offset by the limitations imposed

by the low productivity of the environment and

consequent spatial and temporal patterns of grazing

activity.

The swales in the Simpson Desert dune fields seem to

be an example of managed herbivore populations in

‘‘disequilibrium’’ with their plant resources (Illiuss and

O’Connor 1999). During the rare periods after rain,

moisture in forage and surface waters reduce the reliance

of stock on artificial bore water. In these times of

abundance, ephemeral species are able to complete their

life cycle before herbaceous fodder has declined to the

extent at which there is selective pressure on palatable

TABLE 2. Significant positive (þ) and negative (�) relationships from statistical models and Kendall’s tau correlation tests.

Response variable�
(life-form, frequency for species) Silt/clayc*** CGI***

Soil
pH

Silt/clay 3
grazing

Silt/clay 3
soil pH

CGI 3
soil pH

Grass cover int. ***int. �***
Forb cover �*** ***þ***
Total species diversity þ*
Annual species diversity þ**
Perennial species diversity þ* ***�*
Total species richness þ*
Annual species richness þ* int. ***int. �*
Perennial species richness þ*
Annual grass richness þ*
Annual grass abundance þ***
Perennial grass abundance (small-scale) þ* NA NA NA
Perennial forb abundance þ*
Rare species richness þ** ***�*
Total species richness (small-scale) þ*
Tribulus eichlerianus (AF, 57) �* ***þ*** NA NA NA
Dactyloctenium radulans (AG, 56) þ*** NA NA NA
Aristida contorta (AG, 54) �*** ***�***
Eragrostis dielsii (AG, 53) int. int. þ**
Tragus australianus (AG, 22) þ** þ**
Triraphis mollis (AG, 44) �*** �*** ***þ**
Ptilotus polystachyus (AF, 49) �** �**
Indigofera colutea (AF, 40) �* þ** ***þ** NA NA NA
Amaranthus mitchellii (AF, 33) int. int. þ**
Heliotropium tanythrix (AF, 33) þ*
Portulaca intraterranea (AF, 32) þ** ***þ**
Portulaca oleracea (AF, 30) �* �* NA NA NA
Fimbristylis dichotoma (PF, 26) þ** �* ***�*
Eremophila obovata (Shrub, 46) �** �*** ***�*
Ipomoea polymorpha (AF, 14) �* NA NA NA
Eragrostis sororia (AG, 13) þ** NA NA NA
Paspalidium rarum (AG, 13) þ*** �* ***�** NA NA NA
Sporobolus australasicus (AG, 13) þ* NA NA NA
Sida cunninghamii (PF, 11) �* ***þ* NA NA NA
Vigna sp. (McDonald Downs Station
RA Perry 3416) (AF, 11)

þ** NA NA NA

Notes: The abbreviation ‘‘int.’’ indicates that the variable was present in the significant model interaction. Species that exhibited
no significant relationship with any explanatory variables are listed in Appendix C. ‘‘NA’’ indicates that the interactions do not
apply because the response variable was examined with the nonparametric Kendall’s tau test. Empty cells in correlation columns
indicate that the relationship is nonsignificant. CGI stands for cumulative grazing index. Life-form abbreviations are: AG, annual
grass; AF, annual forb; PG, perennial grass; PF, perennial forb.

� For individual species as response variables, life-form and frequency are given in parentheses.
* P , 0.05; ** 0.05 , P , 0.01; *** 0.01 , P , 0.001.
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species. Adaptations for surviving boom and bust

rainfall also act as adaptations to grazing in these arid

environments. The understories of the dune swales are

dramatically ephemeral, being reduced to bare ground

during typical conditions and regenerating as a sparse

herbaceous cover after rain. All of the common

perennial forbs (Table 2), with the possible exception

of Fimbristylis dichotoma, have an ephemeral growth

strategy and germinate en masse after substantial rain

(R. J. Fensham, personal observation).

Despite the importance of edaphic conditions, grazing

seems to be having a largely independent effect on

floristic composition in the Simpson Desert dune swales.

Grazing and soil pH were significantly related in this

study but the effect seems to result from the chance

occurrence of low pH sites at water-remote locations

rather than high soil pH around water points (Appendix

B), as would be expected if long-term grazing distur-

bance resulting from the deposition of urea in urine and

manure was raising alkalinity (Turner 1998, Smet and

Ward 2006). The soils have not been compacted around

the water points, and there was no evidence of

exacerbated erosion. There is also no evidence of

discontinuity in the composition of the floristic data

(Fig. 5), as was apparent in a similarly designed study

from Mongolian arid grassland (Sasaki et al. 2008).

Grass cover and forb cover had no significant relation-

ships with the cumulative grazing index. There are no

perennial species that respond negatively to grazing that

would seem to have an important role in stabilizing soils.

The most likely candidate is the perennial sedge

Fimbristylis dichotoma, which forms a small tussock,

but the significance of its response pattern can only be

tentatively suggested because, while it was only present

in high abundance at lightly grazed sites, it was also

frequently absent in these circumstances (Fig. 6). In any

case, Fimbristylis dichotoma rarely forms sufficient cover

to reduce erosion. The annual grasses Aristida contorta

and Triraphis mollis and the annual forb Ptilotus

polystachyus exhibit a decreasing trend with cumulative

grazing and thus do seem to be preferentially grazed.

The response of T. mollis and P. polystachyus is mostly a

product of their absence where cumulative grazing

pressure is high (Fig. 6), such as within 500 m of water

points. Areas subject to this level of grazing pressure are

only a miniscule proportion of the broader landscape in

the Simpson Desert (Fig. 1). Aristida contorta, the most

dominant grass, is also eliminated at high grazing

pressure, but shows a more continual pattern of decline.

All three species are currently common in the landscape

FIG. 6. Abundance data for the species exhibiting a significant response to the cumulative grazing index (CGI). Circle sizes are
proportional to the value of other variables that either have an interactive effect (Amaranthus mitchellii and Eragrostis dielsii) on
the response or have an independent effect on the response. The secondary variable is soil pH for Aristida contorta and silt/clay for
other species. No secondary variable was significant for Sporobolus australasicus. Abundance data are derived from unrepeated
scoring of species presence in increasing quadrat sizes (see Methods).
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and can persist where grazing pressure is moderate. All

three have wind-dispersed seed, and with an annual life

strategy it seems likely their populations would recover

with the relaxing of grazing pressure. While it seems

unlikely that degradation states have formed around

water points the ultimate test will be the capacity of

these areas to recover the plant composition represented

in the lightly grazed parts of the landscape.

Swainsona microphylla was the only species with a

frequency greater than four was restricted to sites with

low exposure to grazing (Appendix E), and this

distribution could easily be expected by chance. The

lack of species that that can be identified as reliant on

grazing relief refuges in the gidgee swales of the Simpson

Desert seems to contrast with the findings of Landsberg

et al. (2003). The sites in that study had a longer history

of grazing than the Simpson Desert swales but also had

a less rigorous analysis based on far fewer sampling

stations across a broad range of environments. Lands-

berg et al. (2002) suggested that palatable, drought-

hardy perennial species may be most susceptible to

grazing on water-remoteness gradients. In this study the

richness of perennial species and the abundance of

perennial forbs showed a positive relationship with

cumulative grazing. However, the results also reinforce

that some perennial species can be sensitive to grazing in

arid systems. Of the five relatively common perennial

species, Eremophila obovata and Fimbristylis dichotoma

are examples of perennial species that declined with

grazing. The response of the low shrub Eremophila

obovata is mostly a product of absence at heavily grazed

sites (Fig. 6). However, further declines in Eremophila

obovata would be expected if the adult plants are able to

survive with moderate grazing, but recruitment is

inhibited, as has been predicted for other palatable

shrubs in Australian rangelands (Andrew and Lange

1986, Hunt 2001). For another palatable Eremophila

with a similar life-form to Eremophila obovata, long-

term monitoring data suggest that while grazing does

cause adult mortality it does not inhibit recruitment

(Watson et al. 1997), suggesting that as long as seed

production can continue some grazing-sensitive peren-

nial shrubs can persist in arid areas subject to moderate

grazing pressure. Eremophila obovata was flowering and

fruiting abundantly wherever they occurred during this

study.

These findings may have relevance to Australian

deserts at large. Of 16 species in common with other

Australian grazing studies from aridlands (Table 3), one

consistently increases with grazing, another consistently

decreases with grazing, three have a consistent neutral

response, and the other 11 have variable responses.

FIG. 7. Total species richness and species richness of annuals (meanþ SE) at two spatial scales according to segments of the
cumulative grazing index (CGI). Sites were ordered by CGI and then divided into four equal segments (43 17 sites). These groups
are presented because they exhibit a weak modal pattern. There are no statistically significant differences between any of the four
categories (P . 0.05). CGI increases from left to right.

March 2010 689VEGETATION RESPONSE TO GRAZING IN DESERT



Comparisons can only be cautiously interpreted and

may have more to do with statistical power associated

with infrequent species than contrary responses. Fur-

thermore, some studies represent recovery from a

history of grazing, while others such as ours compare

hardly grazed with more heavily grazed areas. This

study has demonstrated that the responsiveness of some

plant species to grazing is dependent upon relatively

subtle changes in soil texture (Appendix D), so it is not

surprising that species can exhibit a range of responses

to grazing across their geographic range (Vesk and

Westoby 2001).

The predictions that a modest decrease in species

richness in response to grazing, that the impact zone in

the immediate vicinity of the water points will exhibit

characteristics of an alternative degradation state, and

that there will be plant species reliant on grazing relief

refuges are not supported by these results. It is possible

that the relative short exposure to managed grazing in

the Simpson Desert dune swales (mostly less than 20

years) has not been sufficient to have expressed full

impact, but the results suggest that these environments

are resilient to the early impacts of sustained livestock

grazing at least. The findings do not demonstrate high

susceptibility to managed grazing despite the study

habitat satisfying the criteria of: (1) soil fertility within

an infertile matrix and (2) from a continent with limited

exposure to grazing over evolutionary timescales (Staf-

ford Smith and Morton 1990, Morton et al. 1995).
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Nonsignificant relationships from statistical models and Kendall’s tau correlation tests (Ecological Archives E091-050-A3).
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Modeled probability of occurrence of Amaranthus mitchellii and Eragrostis dielsii, having interactions between the cumulative
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APPENDIX E

Abundance of Swainsona microphylla (present at five sites) in relation to the cumulative grazing index (CGI) (Ecological Archives
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