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Abstract. Even when no baseline data are available, the impacts of 150 years of livestock
grazing on natural grasslands can be assessed using a combined approach of grazing
manipulation and regional-scale assessment of the flora. Here, we demonstrate the efficacy of
this method across 18 sites in the semidesert Mitchell grasslands of northeastern Australia.
Fifteen-year-old exclosures (ungrazed and macropod grazed) revealed that the dominant
perennial grasses in the genus Astrebla do not respond negatively to grazing disturbance
typical of commercial pastoralism. Neutral, positive, intermediate, and negative responses to
grazing disturbance were recorded amongst plant species with no single life-form group
associated with any response type. Only one exotic species, Cenchrus ciliaris, was recorded at
low frequency. The strongest negative response was from a native annual grass, Chionachne
hubbardiana, an example of a species that is highly sensitive to grazing disturbance. Herbarium
records revealed only scant evidence that species with a negative response to grazing have
declined through the period of commercial pastoralism. A regional analysis identified 14 from
a total of 433 plant species in the regional flora that may be rare and potentially threatened by
grazing disturbance. However, a targeted survey precluded grazing as a cause of decline for
seven of these based on low palatability and positive responses to grazing and other
disturbance. Our findings suggest that livestock grazing of semidesert grasslands with a short
evolutionary history of ungulate grazing has altered plant composition, but has not caused
declines in the dominant perennial grasses or in species richness as predicted by the preceding
literature. The biggest impact of commercial pastoralism is the spread of woody leguminous
trees that can transform grassland to thorny shrubland. The conservation of plant biodiversity
is largely compatible with commercial pastoralism provided these woody weeds are controlled,
but reserves strategically positioned within water remote areas are necessary to protect
grazing-sensitive species. This study demonstrates that a combination of experimental studies
and regional surveys can be used to understand anthropogenic impacts on natural ecosystems
where reference habitat is not available.

Key words: exclosures; grassland conservation; grazing disturbance; Mitchell grassland; resilience;
semidesert grassland; species diversity.

INTRODUCTION

Predictions that the biota of semiarid rangelands will

be resilient to grazing (Brown and McDonald 1995)

conflict with expectations that managed livestock

grazing will have substantial impacts (Fleischner

1994). The former position is predicated on the

assumption that grazing is part of the evolutionary

history of rangelands, and that these ecosystems are in

nonequilibrium with grazing pressure because of the

variable climate (Ellis and Swift 1988, Briske et al. 2003).

When rainfall is abundant, plant resources are suffi-

ciently bountiful that impacts are minimal. This model

also proposes that the plant species are well adapted to

drought and are more likely to survive than the animals

that rely on their consumption.

The expectation of substantial impacts from livestock

grazing is founded on the expectation that commercial

livestock grazing is of much greater intensity than

herbivory over evolutionary timescales. This is consis-

tent with state-and-transition models recognizing thresh-

olds between condition states that can be breached by

the impacts of grazing (Friedel 1991, Laycock 1991).

The processes causing the transitions from one state to

another are not symmetrical; for example, intense

grazing could eradicate the dominant perennial grasses

in five years or other grazing-sensitive species, but they

would not necessarily recover after five years reprieve.

The collation of global studies of grazing disturbance

have generalized grazing impacts depending on site
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productivity and the evolutionary exposure of the

ecosystem to grazing disturbance (Milchunas et al.

1988, Cingolani et al. 2005). High-productivity ecosys-

tems with a short evolutionary exposure to ungulate

grazing are predicted to be susceptible to steep declines

in the abundance of the dominant species. An initial

increase in plant diversity with intermediate grazing

disturbance has been proposed (Cingolani et al. 2005),

followed by sharp decline, together with invasion by

exotic species, as grazing intensifies such as might occur

with commercial pastoralism. For low-productivity

ecosystems with the same evolutionary history, plant

diversity is predicted to decline even more steeply and is

less reversible. In Australian ecosystems with limited

exposure to grazing, it follows that there may be species

that are poorly adapted to grazing under managed

pastoralism (Lunt 1997), and grazing is listed as a

threatening process for 36 out of 70 plant species

identified as rare and threatened from grassy ecosystems

(Leigh et al. 1984).

The systematic assessment of grazing impacts on

biodiversity is difficult because of the large scale of the

ecosystems involved and because reference areas subject

to light grazing over the long term are rare (e.g.,

Rummell 1951). Long-term exclosures can provide

important insights, but only generate statistical power

for a small subset of the flora, and will not reveal the

impact on the most grazing-sensitive elements of a flora

that have already been eradicated with no capacity for

recovery (Valone et al. 2002, Seymour et al. 2010,

Fensham et al. 2011a). An approach that includes

grazing manipulation in combination with regional-scale

assessment may generate important insights.

The mid-latitude arid and semiarid environments

represent some of the last relatively intact grassland,

with much less conversion to intensive agriculture than

temperate grassland (Hoekstra et al. 2005). These

‘‘semidesert grasslands’’ are mostly subject to rangeland

pastoralism where densities of domestic livestock are

substantially elevated compared to the evolutionary

background. Mitchell grasslands are semidesert grass-

lands (Fig. 1) occupying vast fertile plains in semiarid

and arid regions of northern Australia. These plains are

intersected by ephemeral drainage lines and are remote

from natural permanent water sources (Fig. 1). It can be

assumed that they were subject to minimal mammalian

grazing even prior to the Pleistocene megafauna

extinctions (Johnson 2006). Since European settlement,

thousands of artificial water sources including artesian

bores and earth storage tanks have allowed for greatly

amplified and expanded grazing pressure (James et al.

1999). Substantial negative impacts on plant diversity

could be predicted in the Mitchell grasslands given they

have not previously been subject to substantial mam-

malian grazing disturbance.

This study aimed to evaluate the following predictions

for the consequences of livestock grazing on botanical

diversity after 150 years of managed pastoralism in the

Mitchell grasslands of northern Australia: (1) Changes

in livestock grazing regimes will change plant commu-
nity composition (Milchunas et al. 1988); (2) livestock

grazing will favor annual species and disadvantage
perennial species (Dı́az et al. 2007); (3) dominant grass

species will decline in abundance with increasing
intensity of grazing disturbance, native herbivores, and
livestock (Sutton and Morgan 2009); (4) exotic species

will proliferate under livestock grazing because the
native grasses will be less adapted to this newly imposed

selected pressure, nutrient addition, and compacting of
the soil by hard-hooved animals (Cingolani et al. 2005);

(5) a substantial set of plant species, particularly those
known to be palatable (Lunt et al. 2007), will show

declines over time in herbarium records with the
introduction of livestock grazing; and (6) rare species

will have generally declined because of livestock grazing
(Leigh et al. 1984).

These predictions are consistent with findings of local
studies either from the Mitchell grasslands (Hall and Lee

1980, Orr and Phelps 1994) or from related grassland
ecosystems on similar soils in more mesic climates

(Fensham 1998, Fensham et al. 1999, Lewis et al. 2008).
A network of 15-year-old grazing exclosures that

include exclusion of all large native and exotic herbi-
vores, livestock exclusion, and grazing management

typical of commercial pastoralism is employed to test
predictions 1–4 above (Fig. 2). There are numerous

examples where rangelands exhibit minimal recovery
from a presumed degradation state after long periods of
grazing protection (Laycock 1967). However, one of the

few long-term studies with floristic baseline data did
reveal substantial recovery after 15 years (Fuhlendorf

and Smeins 1997). Exclosures may suggest that some
species without adequate representation for statistical

analysis are declining in the grazed landscape. Further-
more, rare species in the broad landscape may have

declined because of grazing. Plant species in the first
category are identified by developing geographical,

morphological, and ecological characteristics consistent
with grazing sensitivity (prediction 5). A similar analysis

is then applied to the entire recorded flora of Mitchell
grasslands to identify rare species that may be declining

from grazing (prediction 6).

METHODS

Study area

The Mitchell grasslands, named after the dominant
and endemic genus Mitchell grass (Astrebla), occupy 54

million ha in a discontinuous arc across eastern and
northern Australia on clay- and silt-rich soils formed

from fine-grained sediments and basalt or on alluvial
plains, where mean annual rainfall is 200–550 mm (Fig.

1) falling mostly in summer. The soils are classified as
vertosols because of their uniform profiles and tendency

to self-mulch and crack on drying (Isbell 1996) and their
high fertility (Orr 1975). Our study was conducted in the

northeastern realm of the Mitchell grasslands in the
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state of Queensland, and we surveyed 18 sites all within

separate paddocks (0.9–10.4 km apart) on six properties

(Fig. 1). Mean annual rainfall as determined from

modeled data (Jeffrey et al. 2001; SILO, data available

online)5 varies from 376 mm at Whitehill to 467 mm at

Kilterry, with 75% and 89% of the rainfall occurring in

the wettest six months at the driest and wettest sites,

respectively.

At each site there are two adjacent 45 3 45 m

exclosures: a five-wire exclosure designed to exclude

sheep and cattle but not kangaroos (hereafter the

‘‘macropod grazed’’) and a 2 m high netting fence (50-

FIG. 1. (a) The distribution of Astrebla-dominated Mitchell grassland in Australia (dark gray) and Dichanthium-dominated
blue grassland (light gray). The 500-mm rainfall isohyet is identified by the dashed line. Queensland is outlined by the thin black
line. The location of other relevant studies are identified as: 1, Fensham (1998); 2, Fensham et al. (1999); 3, Lewis et al. (2008); and
4, Lewis et al. (2009). The broad survey by Fensham et al. (2000) encompassed the Mitchell grasslands within Queensland. The
location of the detailed map (b) is also indicated by the box outlined with a bold black line. (b) Location of the six properties (black
squares), each with three exclosures included in this study: A, Alva Downs; K, Kilterry; C, Cassilis; V, Verastan; L, Loongana, and
W, Whitehill. The permanent natural waters are identified with black dots (after Fensham et al. 2011b).

5 http://www.longpaddock.qld.gov.au/silo/
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cm gauge) designed to exclude all mammalian herbi-

vores greater than 200 g (hereafter the ‘‘ungrazed’’).

Areas outside the fences are designated as ‘‘open

grazed.’’ The exclosures were established between July

and December 1994.

Grazing history was obtained through landholder

interviews and indicates that some sites are grazed by

cattle and others by sheep at a range of average

intensities (Appendix A). Average stocking rates are

difficult to estimate because all managers reported

substantial variation, including periods of rest without

stock, particularly during dry periods. However, the

values reported, 0.07–0.12 cattle equivalents/ha, are

typical of commercial pastoralism that is the dominant

land use across the Mitchell grasslands (Scattini et al.

1988). Reported densities of kangaroos were low (;7

individuals/km2) at the nine northern exclosures and

medium to high at the southern exclosures (;18

individuals/km2). Kangaroo densities are almost cer-

tainly higher at these sites with the addition of water and

predator (dingo) control than they were in the pre-

pastoral landscape (Newsome 1975). Using a conserva-

tive assumption that kangaroo densities were half those

at present, and established equivalence conversions

between kangaroo, cattle, and sheep (Appendix A), the

combined kangaroo–livestock grazing intensity is cur-

rently between 21 and 88 times more intense than before

pastoralism.

In order to describe the climatic conditions prior to

sampling, modeled rainfall data was used to calculate

the following: mean annual rainfall, rainfall seasonality

(coefficient of variation of average monthly values),

summer rainfall prior to sampling (October 2008–March

2009), and winter rainfall prior to sampling (April 2008–

September 2008).

Grazing treatments

Sampling was conducted in April 2009 after substan-

tial summer rainfall. Twelve plots were established

within each of the two fenced treatments and in the

open-grazed areas within 5 m of the perimeter of the

exclosures. The plots were established at regular

intervals, but the actual locations varied to ensure

constancy of soil type and stone cover, to avoid

trampled areas around the perimeter of the fences and

areas where ‘‘tumbleweeds’’ had gathered along the

fence lines.

The final data set comprised 648 plots (12 pseudo-

replicates 3 3 treatments 3 18 sites). Species presence

was recorded from within subplots of increasing size

within a 73 2 m plot. Species present in the first 230.33

m subplot were assigned an abundance score of 4,

species present in the next 2 3 0.67 m section were

assigned an abundance score of 3, species present in the

next 2 3 2 m section were assigned an abundance score

of 2, and the final 23 4 m section an abundance score of

1. This method, involving unrepeated scoring of species

presence, has been demonstrated to provide the best

return (robust measure of species density) for effort,

thereby allowing for a relatively large quadrat size

(Morrison et al. 1995). The method does not accurately

reflect abundance in terms of biomass, but discriminates

abundance in terms of density unless a species density is

consistently higher than one individual per smallest

subplot (0.66 m2). Plant nomenclature follows Bostock

and Holland (2010). Infraspecific taxa were not recog-

nized with the exception of Dichanthium sericeum var.

polystachyum and Dichanthium sericeum var. sericeum,

which are annual and perennial, respectively. Iseilema

fragile, I. macratherum, and I. vaginiflorum were not

distinguished. Voucher specimens of all species were

lodged at the Queensland Herbarium (Brisbane, Aus-

tralia).

Herbaceous biomass samples were collected from 12

253 25 cm frames positioned between the floristic plots.

These samples mostly contained live material, but

included a small fraction of dead litter. In order to

allow for underlying soil influences that may be

independent of grazing treatment, 12 surface (1–5 cm)

soil cores were collected adjacent to each of the 12 plots,

FIG. 2. (a) Grazed Mitchell grassland after abundant
summer rainfall dominated by Astrebla, demonstrating the
low basal area and large inter-tussock spaces, and (b) open-
grazed plot adjoining ungrazed exclosure at Verastan.
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bulk-sampled, and then subsampled to provide one

sample for each site–treatment combination. Particle

size analysis of soils was conducted using dispersion to

separate coarse- and fine-sand fractions and the

hydrometer method to quantify silt and clay content

(Thorburn and Shaw 1987). Soil pH was determined

following the method of Rayment and Higginson (1992).

Multivariate analysis

An ordination analysis was prepared to discriminate

the relative magnitude of between-treatment effect and

between-site effects on species composition. Replicated

plots were grouped at the treatment scale, where species

abundance was represented as a frequency of occurrence

in the 12 23 7 m plots. These data were ordinated using

non-metric multidimensional scaling in two dimensions

with no transformation or standardisation of abundance

data using the Bray-Curtis dissimilarity measure and

other default settings in DECODA (Minchin 1991).

ANOSIM was used to detect differences in species

composition between grazing treatments.

Statistical modeling

Plot-level species richness (14 m2), abundance (sum of

abundance scores), and Shannon-weaver diversity were

calculated overall and separately for each of four major

life-form groups: annual grasses, annual herbs (exclud-

ing Poaceae), perennial grasses, and perennial herbs. To

analyze the effects of the different grazing treatments on

these diversity measures, we developed linear mixed-

effects models (hereafter LMEMs) using R.2.13.2 and

the R package nlme (Pinheiro et al. 2012).

Each biodiversity surrogate was modeled as a

function of the three grazing treatments (fixed effect)

with a nested random effects structure of (1) property,

(2) site within property, and (3) plots within site within

property. All response variables were approximately

normally distributed, except perennial grass richness,

which was square-root transformed. At the lowest level

of the model, plot, we included a grouping factor to

represent spatial relationships between plots within the

exclosures and plots in the open that were located

around the perimeters of the exclosures. To account for

this spatial dependency among observations, we used

the exponential correlation structure function, corExp,

based on the Euclidean distance between x and y values

(plot coordinates) with a range of 17 and a nugget of

0.7. In all cases, corExp improved model fits as assessed

by comparing models fitted with restricted maximum

likelihood with likelihood ratio tests and diagnostic

plots (Pinheiro and Bates 2004). Wald F statistics were

then used to assess the significance of the fixed effect

within the LMEMs (Pinheiro and Bates 2004).

Species responses to grazing treatment were evaluated

if they were present in at least 10 plots at more than two

sites, and with a frequency greater than five at the site

scale. Overall, 34 species (24% of species surveyed) met

our criteria, allowing us to model their response to

grazing treatments and environmental variables. We

modeled changes in species abundance within the

treatments using generalized linear mixed-effects models

(GLMEMs) with a Poisson error distribution, which

were fitted using maximum likelihood and the lme4

package within the R program (Bates and Maechler

2012).

As revealed by the ordination analyses, the impor-

tance of several environmental variables was evaluated

as additional fixed effects, i.e., mean annual rainfall,

previous six months of summer rainfall, previous six

months of winter rainfall, rainfall seasonality, clay

content, silt content, fine-sand content, coarse-sand

content, total sand content, and soil pH. Environmental

variables were standardized by subtracting mean values

and dividing by standard deviations (except soil pH and

rainfall seasonality). An information-theoretic model

selection procedure was used to compare the predictive

power of models with different fixed effects using

DAICc, which is preferable over AIC for small sample

sizes (Johnson and Omland 2004). Environmental

variables were considered important predictors if

inclusion led to a DAICc ��4, as a conservative cutoff

for identifying competing models (Burnham and An-

derson 2002, Grueber et al. 2011). Multiple comparisons

of means (Tukey contrasts) were made using the

multcomp package, an algorithm for simultaneous

inference tests for parametric models including LMEMs

and GLMEMs (Hothorn et al. 2008).

Nonsignificant ‘‘decreaser’’ species

Some species in the Mitchell grasslands may have

declined substantially with pastoral grazing, but remain

relatively abundant. We assumed that these species

could be exhibiting negative responses to grazing in the

exclosures, although not necessarily at levels that are

statistically significant. Potential candidates were iden-

tified as those species occurring at more than one site

where the combined average abundance in the ungrazed

and macropod-grazed treatment was greater than 140%
of the average abundance in the open-grazed treatment.

The potential sensitivity of species to grazing was based

on seven morphological, geographical, population

structure, and ecological characteristics (Table 1).

Species that were determined to be sensitive to more

than three of these characteristics were identified as

grazing ‘‘decreaser’’ species.

Regional flora assessment

Another analysis was conducted to assess the Mitchell

grassland flora, not represented in the exclosures, which

may be threatened by livestock grazing. Botanical

collection in Mitchell grasslands extends back to the

first European explorer Major Thomas Mitchell (Barker

and Barker 1990) and includes substantial effort prior to

pastoral settlement and does not indicate any species

that are extinct. Sites that have not been grazed

extensively by livestock for use as reference areas are
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difficult to find. Because there are no data regarding the

pre-livestock grazing composition of our plots or the

wider landscape, the 433 plant species known to Mitchell

grasslands in Queensland were each assessed on their

potential sensitivity to grazing using herbarium speci-

men notes, online herbaria, and expert knowledge and

designated as: (1) known from .10 populations in

Mitchell grasslands and other vegetation types subject to

commercial rangeland pastoralism with an estimated

total population size of .1 million (M) or (2) rare or

poorly known species potentially threatened by grazing.

We cannot assume that species in category 1 are not

being reduced by grazing, but the arbitrary figure of 1 M

is used to discriminate the species that may be under

imminent threat of grazing. Random searches in

Mitchell grasslands were conducted for these rare

species at 345 locations, and population estimates

derived on the number of plants located in the search

area factored upwards for their area of occupancy in the

Mitchell grassland (Appendix C). The searches also

established evidence relating to the grazing sensitivity of

the species based on morphological, population struc-

ture, and ecological characteristics (Table 1).

Following field survey, the rare or poorly known

species were classified as grazing sensitive, not grazing

sensitive, or data deficient. A woody species classified as

‘‘not grazing sensitive’’ has regenerating populations in

the grazed landscape. A nonwoody species classified as

‘‘not grazing sensitive’’ has .1 M plants in the grazed

landscape in more than five populations, is not

selectively grazed, and may also have exhibited a

positive response to disturbance. Species not meeting

those criteria were classified as either ‘‘grazing sensitive’’

if, after substantial population surveys, these criteria

could not be satisfied, or as data deficient if inadequate

data ensued from the surveys.

RESULTS

Grazing treatments

After 15 years, herbaceous biomass ranged across

treatments and sites from between 0.42 and 4.53 t/ha (1 t

[metric ton] ¼ 1 Mg). Differences between ungrazed

treatments and macropod-grazed treatments were gen-

erally consistent with landholder interpretations of

macropod densities, i.e., sites with high macropod

densities had relatively low herbaceous biomass in

macropod-grazed treatments compared to ungrazed

treatments (Fig. 3). Herbaceous biomass was generally

lower in open-grazed treatments (Fig. 3).

The data set from the exclosures consisted of 141

species (Appendix D for species list and frequency data),

representing 33% of the Mitchell grassland flora in the

state of Queensland, and included 21 annual grasses, 56

annual herbs, 17 perennial grasses, 43 perennial herbs,

and four trees and shrubs. Mean annual rainfall, rainfall

coefficient of variation, coarse sand, and clay content

TABLE 1. Assumptions pertaining to species characteristics regarding grazing sensitivity and the sections of this study to which
they were applied.

Characteristic
Assumption regarding
grazing sensitivity Application

Life-form perennial more than annual assessment of decreaser species,
regional assessment of flora

Geographic range ,100 000 km2 more than
.100 000 km2

assessment of decreaser species

Occurrence in habitats outside Mitchell
grassland

restricted to Mitchell grassland
more than occurs in other
habitats

assessment of decreaser species,
regional assessment of flora

Frequency in 609 sites from a broad survey of
Mitchell grasslands in Queensland (Fensham
et al. 2000)

�10 more than .10 assessment of decreaser species

Trends through time of herbarium collections
(Appendix B)

flat trend more than steep trend
relative to the trend through
time in overall Australian
collections

assessment of decreaser species

Grazing sensitivity from other studies (see Table
3)

decreasers more than other
responses

assessment of decreaser species

Palatability as determined from literature
(Cunningham et al. 1981, Milson 2000)

palatable more than non-palatable
species

assessment of decreaser species

Population estimate (Appendix C) ,100 000 more than .100 000
individuals

regional assessment of flora

Palatability as determined by selective grazing
from field observations

palatable more than non-palatable
species

regional assessment of flora

Irruptive population dynamics (nonwoody
species only; based on multiple visits to
individual localities after rain)

non-irruptive more than irruptive
populations dynamics

regional assessment of flora

Regenerating populations, at least 50% of
population ,50 cm tall (woody species only)

populations without more than
populations with regeneration

regional assessment of flora

Positive response to disturbance (abundant on
roadsides; where biomass has been
substantially depleted by grazing

no evidence of disturbance
response more than favoring
disturbance

regional assessment of flora
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were much stronger correlates through a two-dimen-

sional ordination space than grazing (Fig. 4), indicating

that, in the year of sampling, these factors were more

important determinants of species composition at the

regional scale than grazing effects.

At all but three of the 18 sites, there were significant

differences in species composition between the grazing

treatments, and differences were significant (P , 0.05)

between ungrazed and open-grazed treatments at all

sites (Appendix E for ANOSIM results).

Total richness and diversity were not significantly

different between any grazing treatments (see Appendix

F for all LMEM results). Overall abundance was lower

in the open-grazed treatment than the other treatments,

but only marginally significant (F2,52 ¼ 3.00, P ¼ 0.06).

Richness of annual grasses was lower in the ungrazed

treatment than the others (F2,52¼ 3.41, P¼ 0.04; Fig. 5),

and abundance of annual grasses (F2,52¼ 3.98, P¼ 0.02)

was lower in the ungrazed treatment than the open-

grazed treatment (Fig. 5). Perennial-herb abundance

was significantly higher in the macropod-grazed treat-

ment than the open-grazed treatment (F2,52 ¼ 5.06, P ¼
0.01; Fig. 5), while annual-herb abundance was signif-

icantly lower in the open treatment than the other

treatments (F2,52¼ 3.70, P¼ 0.04; Fig. 5). We found no

significant differences in abundance, richness, or diver-

sity between grazing treatments for any of the other life-

form groups.

Seven of the 34 most common species had statistically

significant responses to the grazing treatments (Table 2).

The annual grasses Dactyloctenium radulans, Panicum

laevinode, and the annual herb Streptoglossa odorata had

a positive response to grazing disturbance. The annual

grass Chionachne hubbardiana and the perennial grass

Dichanthium sericeum var. sericeum had a negative

response. The annual grasses Digitaria ctenantha and

Eragrostis tenellula and the perennial herb Ipomoea

FIG. 3. Mean herbaceous dry biomass from 12 25 3 25 cm
frames between grazing treatments (U, ungrazed; M, macropod
grazed; O open grazed) for the 18 sites (1 t [metric ton]¼ 1 Mg).
‘‘Ungrazed’’ exclosures were designed to exclude all mammalian
herbivores greater than 200 g; exclosures that excluded sheep
and cattle, but not kangaroos, were termed ‘‘macropod grazed’’;
and areas outside the fences were designated ‘‘open grazed.’’
Macropod densities from landholder interview (Appendix A)
are assigned low (dotted lines), medium (dashed lines), and high
(thin solid lines), and the mean value across all sites is indicated
(bold solid line).

FIG. 4. Two-dimensional ordination diagram with properties identified by the shape of the symbols and annotated
(multidimensional scaling; MDS). Grazed treatments are identified as ungrazed (black symbols), macropod grazed (gray symbol),
and open grazed (white symbol). Individual sites are clustered, but cannot always be clearly determined because of overlap with
other sites. The direction of the most significant vectors is indicated with their strength proportional to the length of the arrows.
Only vectors with a maximum R value greater than 0.80 are indicated. Other factors that were not included with their maximum R
values are: clay 0.69; silt 0.48, fine sand 0.68; soil pH 0.69; and grazing 0.11.
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lonchophylla had peak abundances in the macropod-

grazed treatment.

The only exotic species in the data set was the

perennial grass Cenchrus ciliaris and it occurred at six

sites on the three most southerly properties (Fig. 1).

Mean abundance score for this species in relation to

grazing treatment was: ungrazed, 3.00; macropod

grazed, 2.25; open grazed, 2.50.

Nonsignificant ‘‘decreaser’’ species

There were five species that were not sufficiently

frequent for statistical modeling that met the criteria for

potential decreasers. Cyperus bifax, Flaveria australa-

sica, and Trichodesma zeylanica are generally unpalat-

able, are common with broad geographic ranges, and

occur in habitats beyond Mitchell grassland (Table 3).

Peripleura hispidula is widespread in other habitats and

the collecting trend is higher than the null trend. The

geophytic lily Bulbine bulbosa is palatable, was rarely

recorded in the broad survey, has a flat collecting trend

through time relative to the overall collecting effort, and

is known to be a decreaser elsewhere (Table 3).

Of the four species that exhibited a decreasing trend

with open grazing, Chionachne hubbardiana showed the

most dramatic decline (more than a 40% reduction) and

is regarded as palatable, restricted to grasslands, and

shows a relatively flat trend in the collecting record

(Table 3). Dichanthium sericeum var. sericeum, and

Panicum decompositum are palatable, have a relatively

flat trend in the collecting record, and both have

ambiguous responses to grazing disturbance from other

studies (Table 3). These two species, together with

Aristida latifolia, which is unpalatable, remain extremely

frequent in Mitchell grasslands (Table 3).

Regional flora assessment

From a total of 433 species recorded from Mitchell

grasslands in the state of Queensland (Appendix H),

there were 12 species where pre-existing information

could not confirm population size .100 000 plants.

Surveys revealed that six of these species were likely to

have populations greater than 1 M plants (Appendix I).

The two tree species Acacia crombiei and Acacia peuce

are classified as ‘‘not grazing sensitive’’ because seedlings

were usually evident within grazed areas although some

seedlings of both were browsed. Five herbaceous species

were either not selectively grazed or were advantaged by

disturbance, and total population sizes for all five are in

excess of 1 M plants. Surveys after winter rain failed to

locate Iatosperma australiense and Spathia neurosa,

despite previous records suggesting this as the optimum

time for sighting these annual species. Surveys within the

geographic range of Calotis suffruticosa did not reveal

characteristics of grazing sensitivity, but failed to locate

a large population. Picris barbarorum was rare and

observed to be grazed, but is known to be irruptive in

other grasslands in higher rainfall environments. The

shrub Eremophila stenophylla is more extensive in

habitats outside Mitchell grassland, is selectively grazed,

and is not regenerating in areas subject to commercial

pastoralism.

FIG. 5. Mean and standard error responses for species richness, Shannon diversity index, and abundance (sum of abundance
scores for individual species; seeMethods) according to life-form groups and grazing treatment (U, ungrazed; M, macropod grazed;
O, open grazed) for (a) annual and (b) perennial totals, grasses, and herbs. Means that are significantly different as determined by
multiple comparisons of means (Tukey contrasts) from linear mixed-effects models (LMEMs) are annotated with different letters.
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DISCUSSION

Grazing treatments

With our combined experimental and regional assess-

ment approach, we found that the effects of livestock

grazing on the composition of the Mitchell grassland

flora are subordinate to regional gradients in rainfall

(annual average, seasonality, and recent rainfall history)

and soil texture (Fig. 4). The dominant influence of

rainfall gradients at regional scales (Fensham et al. 2000,

Lewis et al. 2009), rainfall history (Foran 1986,

O’Connor and Roux 1995), and soil patterns (Stohlgren

et al. 1999, Fensham et al. 2000, Kohyani et al. 2008)

have been shown to overwhelm management effects in

other grasslands. The importance of rainfall history as a

determinant of fluctuations in the dominant species in

Mitchell grasslands has also been previously recognized

(Orr and Evenson 1984, Orr et al. 1988, Orr 1991).

Despite these overarching influences, floristic composi-

tion varied modestly between grazing treatments at the

scale of individual sites. There were roughly equal

numbers of species with negative and positive responses

to grazing treatments, and a larger group that responded

positively to the intermediate grazing pressure of

macropods.

We predicted that species composition would differ

across the three grazing treatments, livestock grazing

would favor annual over perennial species, and domi-

nant species would decline in abundance with increasing

intensity of grazing pressure. Contrary to our predic-

tions, after 15 years of grazing exclusion compared with

ongoing grazing typical of commercial rangeland

pastoralism in Mitchell grasslands, there were few

differences in plant diversity or abundance of any life-

TABLE 2. Mean (6SE) of the abundance scores and other predictor variables (identified by comparing for species with a
significant response to grazing grouped according to their general response shape) of the most common species in the study.

Species Life-form

Treatment

Other predictor variablesUngrazed Macropod grazed Open grazed

Negative response

Aristida latifolia PG 0.57A 6 0.37 0.51A 6 0.37 0.22B 6 0.37
Chionachne hubbardiana AG 1.26A 6 1.0 1.11A 6 0.3 0.55B 6 0.07 þmean annual rainfall DAICc

¼ �48, þrainfall seasonality
DAICc ¼ �40

Dichanthium sericeum
var. sericeum

PG 0.36A 6 0.20 0.29A,B 6 0.20 0.19B 6 0.20

Panicum decompositum PG 1.02A 6 0.44 0.73A 6 0.45 0.46B 6 0.44

Intermediate positive response (positive modal)

Boerhavia dominii PH 0.22A 6 0.17 0.33A 6 0.17 0.15B 6 0.17
Brachyachne convergens AG 0.17A 6 0.29 0.67B 6 0.30 0.39C 6 0.29
Digitaria ctenantha AG 0.98A 6 0.40 1.47B 6 0.40 1.06A 6 0.40
Gomphrena breviflora AH 0.44A 6 0.39 0.71B 6 0.39 0.63B 6 0.29 �coarse sand, DAICc ¼ �40
Ipomoea lonchophylla PH 1.88A 6 0.8 2.06A 6 0.6 0.92B 6 0.8 �coarse sand, DAICc ¼ �9
Iseilema membranaceum AG 0.46A 6 0.29 0.73B 6 0.30 0.54A 6 0.30
Sida spinosa AH 0.61A 6 0.37 0.77B 6 0.36 0.57A 6 0.36

Intermediate negative response (negative modal)

Abelmoschus ficulneus AH 0.73A 6 0.36 0.50B 6 0.37 0.76A 6 0.36 þprevious summer rain DAICc

¼ �24, þprevious winter
rain DAICc ¼ �28,
þrainfall seasonality DAICc

¼ �15
Alysicarpus muelleri AH 0.75A 6 0.44 0.41A 6 0.44 0.84B 6 0.45
Hibiscus trionum AH 0.39A 6 0.22 0.21A 6 0.21 0.32B 6 0.22
Phyllanthus

maderaspatensis
AH 0.85A 6 0.29 0.47B 6 0.29 0.62B 6 0.29

Positive response

Dactyloctenium radulans AG 0.56A 6 0.60 0.92A 6 0.60 1.77B 6 0.60 þcoarse sand DAICc ¼ �37
Eriochloa crebra PG 0.64A 6 0.42 0.94 B 6 0.43 0.97B 6 0.42
Panicum laevinode AG 0.46A 6 0.6 0.57A,B 6 0.6 0.72B 6 0.4
Salsola kali AH 0.70A 6 0.45 0.78A 6 0.45 0.95B 6 0.45 �mean annual rainfall DAICc

¼ �26
Streptoglossa odorata AH 0.93A 6 0.6 1.08A,B 6 0.5 1.28B 6 0.6

Notes: The direction of the effect of the other predictor variables is indicated as positive or negative. Appendix G identified the
response of 14 species with nonsignificant responses to grazing treatment. Life-form abbreviations are: AG, annual grass; AH,
annual herb; PG, perennial grass; and PH, perennial herb. ‘‘Ungrazed’’ exclosures were designed to exclude all mammalian
herbivores greater than 200 g; exclosures that excluded sheep and cattle, but not kangaroos, were termed ‘‘macropod grazed’’; and
areas outside the fences were designated ‘‘open grazed.’’ Means that are significantly different as determined by multiple
comparisons of means (Tukey contrasts) from generalized linear mixed-effects models (GLMEMs) are annotated with different
superscript letters. Environmental variables were also added to the model one at a time and their explanatory power assessed using
information criteria (IC) techniques (DAICc); we show results for predictors that resulted in DAICc � �4.
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form group. In the northern hemisphere, grazing

generally increases species diversity in high-productivity

ecosystems, and reduces diversity in low-productivity

ecosystems (Bakker et al. 2006). The neutral response of

species to grazing in the Mitchell grasslands may be

compatible with this pattern because they occur on

fertile soils, but productivity is constrained by variable

rainfall (Lewis et al. 2008). A very modest peak in

diversity in the macropod-grazed plots is insufficient to

implicate the intermediate disturbance hypothesis that

predicts a decline in diversity when disturbance is

removed because a few species with high biomass

become dominant and suppress diversity through

competition (Gough and Grace 1998, Cingolani et al.

2005, Sasaki et al. 2009). This response is evident in

more productive grasslands where undisturbed tussock

grasses exclude species of smaller stature that occupy the

inter-tussock spaces (McIntyre et al. 2003, Fynn et al.

2004, Frank 2005). In the Mitchell grasslands, the vast

majority of the inter-tussock flora are not suppressed by

perennial Astrebla grasses even after long periods

without grazing (Lewis et al. 2008). The small subset

of species with a positive response in the macropod-

grazed treatment, despite representing a diversity of life-

form groups (Table 2), are mostly palatable plants of

low stature (Cunningham et al. 1981, Milson 2000) likely

disfavored by competition and grazing. There is also a

small suite of rare species in the Mitchell grasslands that

prosper in disturbed environments with reduced com-

petition (Appendix I).

There were no significant differences in the abundance

of the perennial Astrebla grasses between the grazing

treatments. Astrebla can be depleted with both extreme

grazing pressure (Hall and Lee 1980, Orr et al. 1986, Orr

and Phelps 1994) and severe drought (Orr and Phelps

1994), but has the capacity to rejuvenate through

seedling establishment after adequate rainfall (Orr and

Evenson 1991). The nonsignificant results for Astrebla

abundance between grazing treatments lend no support

to the notion that grazing enhances the germination and

vigor of the dominant perennial grasses in Mitchell

grassland (Everist 1964, Orr 1980). Similar conclusions

have been drawn after livestock removal in both prairies

(Willms et al. 2002) and other semidesert grassland

(Brady et al. 1989).

All three of the perennial grasses identified as

decreasers (Aristida latifolia, Dichanthium sericeum var.

sericuem, and Panicum decompositum) are widespread

and abundant in Mitchell grasslands (Table 3), but have

probably diminished with livestock grazing. Aristida

latifolia has previously been recognized to indicate the

early stages of degradation (Phelps and Bosch 2002), but

this perspective may reflect its perception as a pest with

seeds that irritate sheep and taint wool (Lee et al. 1980).

Substantial increases in the relative abundance of

Dichanthium sericeum occur in the Mitchell grassland

during periods of above average rainfall (Orr 1981, Orr

TABLE 3. Attributes of potential decreaser species, including life-form, geographic range, diversity of habitat, frequency in the
survey data set (Fensham et al. 2000), number of herbarium records, proportion of slope of collecting trend relative to the null
trend (all Australian records), evidence of grazing sensitivity from other studies, and palatability.

Species Life-form

Range
(millions
of km2)

Habitats outside
Mitchell grassland

Frequency in
data set

(n ¼ 609)

No. herbarium
records (percentage

of trend)�

Nonsignificant decreaser species

Bulbine bulbosa PH (geophyte) 2.57 other grassland, Eucalyptus
woodland, Acacia woodland,
floodplain

6 684 (0.68)

Cyperus bifax PH (geophyte) 8.32 other grassland, floodplain 136 631 (0.83)
Flaveria

australasica
AH 6.41 other grassland, Acacia woodland,

cultivated grassland
14 475 (0.89)

Peripleura
hispidula

AH 4.80 Eucalyptus woodland, Acacia
shrubland

0 162 (1.21)

Trichodesma
zeylanica

PH 8.23 Eucalyptus woodland 17 1597 (0.84)

Species identified as descreasers from exclosures

Chionachne
hubbardiana

AG 1.35 other grassland 23 103 (0.68)

Dichanthium
sericeum

PG with some
annual forms

9.04 other grassland, Acacia woodland,
Eucalyptus woodland

271 2434 (0.53)

Panicum
decompositum

PG 8.42 other grassland, Eucalyptus
woodland, Acacia woodland

220 1446 (0.59)

Aristida latifolia PG 5.39 other grassland, Acacia woodland 268 917 (0.64)

Notes: Life-form abbreviations are: AG, annual grass; AH, annual herb; PG, perennial grass; and PH, perennial herb. Evidence
of grazing response was taken from the following studies: 1, Orr (1980); 2, Foran and Bastin (1984); 3, Orr and Evenson (1984); 4,
Dorrough et al. (2011); 5, Fensham et al. (1999); 6, Fensham and Skull (1999); 7, Phelps and Bosch (2002); 8, McIntyre et al. (2003);
and 9, Lewis et al. (2008). Palatability was taken from the following studies: 1, Cunningham et al. (1981); and 2, Milson (2000).
Increasers are species favored by grazing, decreasers are species disfavored by grazing, intermediate refers to species with a
preference for intermediate grazing disturbance, and neutral refers to species with no discernible preference for grazing.

� The values in parentheses show the percentage of trend in collections relative to all collections.
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and Evenson 1984, Austin and Williams 1988, Orr et al.

1988).

The most dramatic decreaser with grazing was the

annual grass Chionachne hubbardiana. While it is

recognized as palatable, it has not previously been

considered an important component of Mitchell grass-

land pastures (Phelps and Bosch 2002). The results of

our study suggest it would have been ubiquitous before

the advent of stock grazing north of the Tropic of

Capricorn. In rangelands dominated by annual species it

has been suggested that an ephemeral life-form may

confer considerable grazing tolerance (Fensham et al.

2010, Silcock and Fensham 2013). However, this may

not necessarily apply in grazing systems dominated by

perennial grasses where grazing pressure can be main-

tained when annuals are in active growth immediately

after rain. Chionachne is an example of an annual that is

also grazing sensitive. Other grazing-sensitive plant

species that were formerly dominant and have since

been greatly reduced by pastoral management in

northern Australia include the perennial grasses Di-

chanthium queenslandicum from subhumid grassland

(Fensham et al. 2011a) and Capillipedium parviflorum

from savanna woodland (Fensham and Skull 1999).

We predicted that under the wide-scale use of Mitchell

grasslands for livestock grazing, a substantial number of

plant species would have declined, particularly species

already rare in the landscape. However, the species from

the exclosures exhibiting negative responses to grazing

and the nonsignificant but potentially declining species

(Table 3) were all common, widespread, and secure,

even if overall population numbers may have declined.

Of the nine species from the treatment data set identified

as potential decreasers, only the geophytic lily, Bulbine

bulbosa, showed consistent evidence suggesting that it

may have declined over 100 years of pastoralism.

However, this species responds rapidly after rain and

occurs at high density, particularly in alluvial situations,

over a large area of the Mitchell grasslands.

Regional flora assessment

Regional field surveys determined that 8 of the 12

species potentially threatened by grazing from the

Mitchell grassland flora do not have characteristics

suggesting grazing sensitivity (Appendix I). Four species

were deemed data deficient. Field surveys failed to locate

three poorly known plant species despite searching in

suitable habitat within their geographic range. These

species could be threatened by grazing, but it is also

possible that they irrupt in response to specific seasonal

cues consistent with an annual life cycle and winter

germination. Eremophila stenophylla is the only species

in the entire Mitchell grassland flora for which there is

consistent evidence (rarity, selectively grazed, and

lacking regeneration) of potential decline because of

sensitivity to grazing.

The grazing treatment plots were not in positions to

represent some exotic species that have proliferated in

Mitchell grasslands. The only exotic species from the

treatment data set was buffel grass (Cenchrus ciliaris),

which exhibited no response in relation to grazing

treatment. It is widespread through northern Australia,

where it has negative effects on plant diversity (Fairfax

and Fensham 2000), and does occur in Mitchell

grasslands on particular combinations of soil and

climate.

Other studies of grazing effects in semidesert environ-

ments have generated mixed results. For example,

grazing relief elevated plant species diversity in Arizona

(Brady et al. 1989) and decreased diversity in Colorado

(Manier and Hobbs 2007). One of the most compre-

hensive studies, encompassing multiple exclosures from

southwestern USA (Stohlgren et al. 1999), revealed

remarkably similar findings to those presented here:

environmental gradients were more important than

grazing gradients, grazing had modest effects on

composition, and there were no consistent trends in

species diversity between grazing treatments.

The tolerance of the flora of the Mitchell grasslands

and semidesert grasslands, even under the regime of

commercial pastoralism, suggests a nonequilibrium

ecosystem (Ellis and Swift 1988, Briske et al. 2003,

Silcock and Fensham 2013). Sporadic rainfall events

result in germination and growth of both perennial and

annual species. In these periods of abundant forage,

stocking rates of managed herbivores are rarely high

enough to inhibit flowering and seed-set, even for most

palatable species. In the long periods of low rainfall,

grazing animals reduce herbaceous biomass across a

broad spectrum of species, many of which are palatable

TABLE 3. Extended.

Evidence of grazing
response from other
studies (reference)

Palatability
(reference)

decreaser (4) moderately palatable (1)

increaser (5), neutral (9) unpalatable (1)
unpalatable (1, 2)

unpalatable (1, 2)

palatable (2)

intermediate (3, 9), decreaser (1,
5, 7), increaser (6, 8)

mostly palatable (1, 2)

decreaser (8, 9), intermediate (1,
5)

palatable (1, 2)

decreaser (1, 3), neutral (2) unpalatable (1)
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and nutritious. In general, livestock are removed before
the lack of forage would result in livestock mortality,

ensuring the survival of the dominant grasses, albeit as
stubble. At regional scales, the great majority of plant

species persist in Mitchell grasslands under typical
pastoral management.

Managed livestock grazing may be compatible with

botanical conservation in semidesert grasslands. How-
ever, this sanguine conclusion should be tempered by

several caveats: (1) Managed grazing does not result in
the removal of the dominant perennial grasses. (2)

Grazing-sensitive species form a minor component of
semidesert grasslands. These will benefit from reserves

where the impacts of domestic livestock are minimized.
The achievement of grazing relief refuges must consider

the preservation and enhancement of water-remote areas
(James et al. 1999, Fensham and Fairfax 2008) both

within and outside the reserve network. (3) There may
be incremental decline in the populations of some

decreaser plant species. (4) Exotic species may under-
mine biological integrity. Buffel grass (Cenchrus ciliaris)

and Indian couch (Bothriochloa pertusa) have invaded
some Mitchell grassland areas and will probably

continue to expand as in other environments (Fensham
et al. 2013). The former species is promoted by some

pastoralists (Friedel et al. 2011). The invasive legumi-
nous trees prickly acacia Acacia nilotica and mesquite

Prosopis pallida have heavily infested .60 000 km2 of
the Mitchell grasslands (Fig. 6; Osmond 2003, Spies and

March 2004). Cattle ingest the pods of both species and
are a vector for the dispersal of seed (Brown and Carter

1998, Brown and Archer 1999). Prosopis is not
advantaged by decreased grass biomass (Brown and

Archer 1999), suggesting that dispersal rather than
grazing impact may be the main advantage provided

by livestock.
Anthropogenic pressures have been applied to natural

ecosystems worldwide. In many of these ecosystems, it is

a challenge piecing together the full impacts of these

disruptions because there are few, if any, pristine areas

remaining to serve as reference areas. Our study

demonstrates how a combined experimental and target-

ed survey directed towards the rare plants that may be

the ‘‘canaries in the mine’’ can provide insights for vast

ecosystems such as semidesert grasslands.

ACKNOWLEDGMENTS

Special thanks are due to Dave Cobon, who established the
exclosures. Duncan Emmott, John Hardie, Steve Hartmen,
Robert Lord, John Lynch, and John Milne were all generous
hosts at the exclosure sites. John Dwyer is thanked for
assistance with the analysis and Don Butler, Jiaorong Li, and
Will Smith assisted with the figures. The comments of
numerous reviewers, including Theresa Eyre, David Phelps,
and Bruce Wilson, improved the manuscript.

LITERATURE CITED

Austin, M. P., and O. B. Williams. 1988. Influence of climate
and community composition on the population demography
of pasture species in semi-arid Australia. Vegetatio 77:43–49.

Bakker, E. S., M. E. Ritchie, H. Olff, D. G. Milchunas, and
J. M. H. Knops. 2006. Herbivore impact on grassland plant
diversity depends on habitat productivity and herbivore size.
Ecology Letters 9:780–788.

Barker, R. M., and W. R. Barker. 1990. Botanical contributions
overlooked: the role and recognition of collectors, horticul-
turists, explorers and others in the early documentation of the
Australian flora. Pages 37–85 in P. S. Short, editor. History
of systematic botany in Australasia. Australian Systematic
Botany Society, South Yarra, Australia.

Bates, D., and M. Maechler. 2012. Package ‘lme4.’ CRAN. R
Foundation for Statistical Computing, Vienna, Austria.

Bostock, P. D., and A. E. Holland, editors. 2010. Census of the
Queensland flora 2010. Queensland Herbarium, Department
of Environment and Resource Management, Brisbane,
Australia.

Brady, W. W., M. R. Stromberg, E. F. Aldon, C. D. Bonham,
and S. H. Henry. 1989. Response of a semidesert grassland to
16 years of rest from grazing. Journal of Range Management
42:284–288.

Briske, D. D., S. D. Fuhlendorf, and F. E. Smeins. 2003.
Vegetation dynamics on rangelands: a critique of the current
paradigms. Journal of Applied Ecology 40:601–614.

Brown, J. H., and W. McDonald. 1995. Livestock grazing and
conservation on southwestern rangelands. Biological Con-
servation 9:1644–1647.

Brown, J. R., and S. Archer. 1999. Shrub invasion of grassland:
Recruitment is continuous and not regulated by herbaceous
biomass or density. Ecology 80:2385–2396.

Brown, J. R., and J. Carter. 1998. Spatial and temporal patterns
of exotic shrub invasion in an Australian tropical grassland.
Landscape Ecology 13:93–102.

Burnham, K. P., and D. R. Anderson. 2002. Model selection
and multimodel inference. A practical information-theoretic
approach. Springer, New York, New York, USA.

Cingolani, A. M., I. Noy-Meir, and S. Dı́az. 2005. Grazing
effects on rangeland diversity: a synthesis of contemporary
models. Ecological Applications 15:757–773.

Cunningham, G. M., W. E. Mulham, P. L. Milthorpe, and J. H.
Leigh. 1981. Plants of western New South Wales. Soil
Conservation Service of NSW, Sydney, Australia.

Dı́az, S., et al. 2007. Plant trait responses to grazing: a global
synthesis. Global Change Biology 13:313–341.

Dorrough, J., S. McIntyre, and M. P. Scroggie. 2011.
Individual plant species responses to phosphorus and
livestock grazing. Australian Journal of Botany 59:669–680.

FIG. 6. Mitchell grassland converted to open shrubland
after invasion by prickly acacia (Acacia nilotica) (Source:
Department of Agriculture Forestry and Fisheries, Queensland,
Australia).

R. J. FENSHAM ET AL.514 Ecological Applications
Vol. 24, No. 3



Ellis, J. E., and D. M. Swift. 1988. Stability of African pastoral
ecosystems: alternate paradigms and implications for devel-
opment. Journal of Range Management 41:450–459.

Everist, S. L. 1964. The Mitchell grass country. Queensland
Naturalist 17:45–50.

Fairfax, R. J., and R. J. Fensham. 2000. The effect of exotic
pasture development on floristic diversity in central Queens-
land, Australia. Biological Conservation 94:11–21.

Fensham, R. J. 1998. The grassy vegetation of the Darling
Downs, South-Eastern Queensland, Australia. Floristics and
grazing effects. Biological Conservation 84:301–310.

Fensham, R. J., S. Donald, and J. M. Dwyer. 2013. Propagule
pressure, not fire or cattle grazing, promotes invasion of
buffel grass (Cenchrus ciliaris). Journal of Applied Ecology
50:138–146.

Fensham, R. J., and R. J. Fairfax. 2008. Water-remoteness for
grazing relief in Australian arid-lands. Biological Conserva-
tion 141:1447–1460.

Fensham, R. J., R. J. Fairfax, and J. M. Dwyer. 2010.
Vegetation responses to the first 20 years of cattle grazing
in an Australian desert. Ecology 91:681–692.

Fensham, R. J., J. E. Holman, and M. J. Cox. 1999. Plant
species responses along a grazing disturbance gradient in
Australian grassland. Journal of Vegetation Science 10:77–
86.

Fensham, R. J., P. R. Minchin, R. J. Fairfax, J. E. Kemp,
R. W. Purdie, W. J. F. McDonald, and V. J. Neldner. 2000.
Broad-scale environmental relations of floristic gradients in
the Mitchell grasslands of Queensland. Australian Journal of
Botany 48:27–38.

Fensham, R. J., J. L. Silcock, and J. M. Dwyer. 2011a. Plant
species richness responses to grazing protection and degra-
dation history in a low productivity landscape. Journal of
Vegetation Science 22:997–1008.

Fensham, R. J., J. L. Silcock, A. Kerezsy, and W. Ponder.
2011b. Four desert waters: Setting arid zone wetland
conservation priorities through understanding patterns of
endemism. Biological Conservation 144:2459–2467.

Fensham, R. J., and S. Skull. 1999. Before cattle: A
comparative floristic study of grassy Eucalyptus woodland
grazed by macropods and cattle in north Queensland,
Australia. Biotropica 31:37–47.

Fleischner, T. L. 1994. Ecological consequences of livestock
grazing in western North America. Conservation Biology
8:629–644.

Foran, B. D. 1986. The impact of rabbits and cattle on an arid
calcareous shrubby grassland in central Australia. Vegetatio
66:49–59.

Foran, B. D., and G. Bastin. 1984. The dynamics of a Mitchell
grass (Astrbela spp.) rangeland on the Barkly Tableland,
Northern Territory. Australian Rangeland Journal 6:92–97.

Frank, D. A. 2005. The interactive effects of grazing ungulates
and aboveground production on grassland diversity. Oeco-
logia 143:629–634.

Friedel, M. H. 1991. Range condition assessment and the
concept of thresholds: a viewpoint. Journal of Range
Management 44:422–426.

Friedel, M. H., A. C. Grice, N. A. Marshall, and R. D. van
Klinken. 2011. Reducing contention amongst organisations
dealing with commercially valuable but invasive plants: The
case of buffel grass. Environmental Science and Policy
14:1205–1218.

Fuhlendorf, S. D., and F. E. Smeins. 1997. Long-term
vegetation dynamics mediated by herbivores, weather and
fire in a Juniperus-Quercus savanna. Journal of Vegetation
Science 8:819–828.

Fynn, R. W. S., C. D. Morris, and T. Edwards. 2004. Effect of
burning and mowing on grass and forb diversity in a long-
term grassland experiment. Applied Vegetation Science 7:1–
10.

Gough, L., and J. B. Grace. 1998. Herbivore effects on plant
species diversity at varying productivity levels. Ecology
79:1586–1594.

Grueber, C. E., S. Nakagawa, R. J. Laws, and I. G. Jamieson.
2011. Multimodel inference in ecology and evolution:
challenges and solutions. Journal of Evolutionary Biology
24:699–711.

Hall, T. J., and G. R. Lee. 1980. Response of an Astrebla spp.
grassland to heavy grazing by cattle and light grazing by
sheep in north-west Queensland. Australian Rangeland
Journal 2:83–93.

Hoekstra, J. M., T. M. Boucher, T. H. Ricketts, and C.
Roberts. 2005. Confronting a biome crisis: global disparities
of habitat loss and protection. Ecology Letters 8:23–29.

Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous
inference in general parametric models. Biometrical Journal
50:346–363.

Isbell, R. F. 1996. The Australian soil classification. CSIRO,
Melbourne, Australia.

James, C. D., J. Landsberg, and S. Morton. 1999. Provision of
watering points in the Australian arid zone: a review of
effects on biota. Journal of Arid Environments 41:87–121.

Jeffrey, S. J., J. O. Carter, K. B. Moodie, and A. R. Beswick.
2001. Using spatial interpolation to construct a comprehen-
sive archive of Australian climate data. Environmental
Modelling and Software 16:309–330.

Johnson, C. 2006. Australia’s mammal extinctions. A 50,000
year history. Cambridge University Press, Melbourne,
Australia.

Johnson, J. B., and K. S. Omland. 2004. Model selection in
ecology and evolution. Trends in Ecology and Evolution
19:101–108.

Kohyani, P. T., B. Bossuyt, D. Bonte, and M. Hoffmann. 2008.
Grazing as a management tool in dune grasslands: Evidence
of soil and scale dependence of the effect of large herbivores
on plant diversity. Biological Conservation 141:1687–1694.

Laycock, W. A. 1967. How heavy grazing and protection affect
sagebrush-grass ranges. Journal of Range Management
20:206–213.

Laycock, W. A. 1991. Stable states and thresholds of range
condition on North American rangelands: A viewpoint.
Journal of Range Management 44:427–433.

Lee, G. R., D. M. Orr, and T. J. Hall. 1980. The feathertop
problem in Mitchell grass pastures. Queensland Agricultural
Journal 106:521–524.

Leigh, J., R. Boden, and J. C. Briggs. 1984. Extinct and
endangered plants of Australia. Macmillan, Sydney, Aus-
tralia.

Lewis, T., P. J. Clarke, N. Reid, and R. D. P. Whalley. 2008.
Perennial grassland dynamics on fertile plains: Is coexistence
mediated by disturbance? Austral Ecology 33:128–139.

Lewis, T., P. J. Clarke, R. D. B. Whalley, and N. Reid. 2009.
What drives plant biodiversity in the clay floodplain
grasslands of NSW? Rangeland Journal 31:329–351.

Lunt, I. D. 1997. Effects of long-term vegetation management
on remnant grassy forests and anthropogenic native grass-
lands in south-eastern Australia. Biological Conservation
96:287–297.

Lunt, I. D., D. J. Eldridge, J. W. Morgan, and G. B. Witt. 2007.
A framework to predict the effects of livestock grazing and
grazing exclusion on conservation values in natural ecosys-
tems in Australia. Australian Journal of Botany 55:401–415.

Manier, D. J., and N. T. Hobbs. 2007. Large herbivores in
sagebrush steppe ecosystems: livestock and wild ungulates
influence structure and function. Oecologia 152:739–750.

McIntyre, S., K. M. Heard, and T. G. Martin. 2003. The
relative importance of cattle grazing in subtropical grass-
lands: does it reduce or enhance plant biodiversity? Journal
of Applied Ecology 40:445–457.

Milchunas, D. G., O. E. Sala, and W. K. Lauenroth. 1988. A
generalized model of the effects of grazing by large herbivores

April 2014 515GRAZING IN SEMIDESERT GRASSLANDS



on grassland community structure. American Naturalist
132:87–106.

Milson, J. 2000. Pasture plants of north-west Queensland.
Department of Primary Industries, Brisbane, Australia.

Minchin, P. R. 1991. DECODA user’s manual. Research
School of Pacific Studies, Australian National University,
Canberra, Australia.

Morrison, D. A., A. F. Le Broque, and P. J. Clarke. 1995. An
assessment of some improved techniques for estimating the
abundance (frequency) of sedentary organisms. Vegetatio
120:131–145.

Newsome, A. E. 1975. An ecological comparison of the two
arid-zone kangaroos of Australia, and their anomalous
prosperity since the introduction of ruminant stock to their
environment. Quarterly Review of Biology 50:389–424.

O’Connor, T. G., and P. W. Roux. 1995. Vegetation changes
(1949–71) in a semi-arid, grassy dwarf shrubland in the
Karoo, South Africa: Influence of rainfall variability and
grazing by sheep. Journal of Applied Ecology 32:612–626.

Orr, D. M. 1975. A review of Astrebla (Mitchell grass) pastures
in Australia. Tropical Grasslands 9:21–36.

Orr, D. M. 1980. Effects of sheep grazing Astrebla grassland in
central western Queenlsand. I. Effects of grazing pressure and
livestock distribution. Australian Journal of Agricultural
Research 31:797–806.

Orr, D. M. 1981. Changes in the quantitative floristics in some
Astrebla spp. (Mitchell Grass) communities in south-western
Queensland in relation to trends in seasonal rainfall.
Australian Journal of Botany 29:533–545.

Orr, D. M. 1991. Trends in the recruitment of Astrebla spp. in
relation to seasonal rainfall. Rangeland Journal 13:107–117.

Orr, D. M., P. S. Bowly, and C. J. Evenson. 1986. Effects of
grazing management on the basal area of perennial grasses in
Astrebla grassland. Pages 56–57 in P. J. Joss, P. W. Lynch,
and O. B. Williams, editors. Rangelands: A resource under
siege. Australian Academy of Science, Canberra, Australia.

Orr, D. M., and C. J. Evenson. 1984. Influences of rainfall and
grazing on the vegetation dynamics of a semi-arid grassland
in south-west Queensland. Pages 310–313 in J. C. Tothill and
J. J. Mott, editors. Ecology and management of world’s
savannas. Australian Academy of Science, Canberra, Aus-
tralia.

Orr, D. M., and C. J. Evenson. 1991. Effects of sheep grazing
Astrebla grasslands in central western Queensland III.
Dynamics of Astrebla spp. under grazing and exclosure
between 1975 and 1986. Rangeland Journal 13:36–46.

Orr, D. M., C. J. Evenson, D. J. Jordan, P. S. Bowly, K. J.
Lehane, and D. C. Cowan. 1988. Sheep productivity in an
Astrebla grassland of south-west Queensland. Australian
Rangeland Journal 10:39–47.

Orr, D. M., and D. G. Phelps. 1994. Basal area change in
Astrebla grassland: in harmony with trends in rainfall and
grazing. Eighth Biennial Conference, Australian Rangeland
Society, Aldgate, Australia.

Osmond, R. 2003. Mesquite. Control and management options
for mesquite (Prosopis spp.) in Australia. Department of
Natural Resources and Mines, Brisbane, Australia.

Phelps, D. G., and O. J. H. Bosch. 2002. A quantitative state
and transition model for the Mitchell grasslands of central
western Queensland. Rangleland Journal 24:242–267.

Pinheiro, J. C., and D. M. Bates. 2004. Mixed effects models in
S and S-plus. Springer, New York, New York, USA.

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and the R
Development Core Team. 2012. Linear and nonlinear mixed
effects models. R Foundation for Staistical Computing,
Vienna, Austria.

Rayment, G. E., and F. R. Higginson. 1992. Australian
laboratory handbook of soil and water chemical methods.
Inkata Press, Melbourne, Australia.

Rummell, R. S. 1951. Some effects of livestock grazing on
Ponderosa pine forest and range in central Washington.
Ecology 32:594–607.

Sasaki, T., S. Okubo, T. Okayasu, U. Jamsran, T. Ohkuko, and
K. Takeuchi. 2009. Management applicability of the inter-
mediate disturbance hypothesis across Mongolian rangeland
ecosystems. Ecological Applications 19:423–432.

Scattini, W. J., D. M. Orr, C. P. Miller, W. E. Holmes, and J.
Hall. 1988. Managing native grasslands. Pages 52–71 in
W. H. Burrows, J. C. Scanlan, and M. T. Rutherford, editors.
Native pastures in Queensland: their resources and their
management. Department of Primary Industries, Brisbane,
Australia.

Seymour, C. L., S. J. Milton, G. S. Joseph, W. R. J. Dean, T.
Ditlhobolo, and G. S. Cumming. 2010. Twenty years of rest
returns grazing potential, but not palatable plant diversity, to
Karoo rangeland, South Africa. Journal of Applied Ecology
47:859–867.

Silcock, J. L., and R. J. Fensham. 2013. Arid vegetation in
disequilibrium with livestock grazing: evidence from long-
term exclosures. Austral Ecology 38:57–65.

Spies, P., and N. March. 2004. Prickly acacia. National case
studies manual. Department of Natural Resources, Mines
and Energy, Brisbane, Australia.

Stohlgren, T. J., L. D. Schell, and B. V. Heuvel. 1999. How
grazing and soil quality affect native and exotic plant
diversity in Rocky Mountain grasslands. Ecological Appli-
cations 9:45–64.

Sutton, F. M., and J. W. Morgan. 2009. Functional traits and
prior abundance explain native plant extirpation in a
fragmented woodland landscape. Journal of Ecology
97:718–727.

Thorburn, P. J., and R. J. Shaw. 1987. Effects of different
dispersion and fine fraction determination methods on results
of routine particle-size analysis. Australian Journal of Soil
Research 25:347–360.

Valone, T. J., M. J. H. Meer, and R. M. Chew. 2002. Timescale
of perennial grass recovery in desertified arid grasslands
following livestock removal. Conservation Biology 16:995–
1002.

Willms, W. D., J. F. Dormaar, B. W. Adams, and H. E.
Douwes. 2002. Response of the mixed prairie to protection
from grazing. Journal of Range Management 55:210–216.

SUPPLEMENTAL MATERIAL

Appendix A

Grazing history for exclosure sites as determined by landholder interview (Ecological Archives A024-029-A1).

Appendix B

Method for assessing herbarium collecting trends (Ecological Archives A024-029-A2).

Appendix C

Survey methodology for rare or poorly known species potentially threatened by grazing (Ecological Archives A024-029-A3).

R. J. FENSHAM ET AL.516 Ecological Applications
Vol. 24, No. 3

http://www.esapubs.org/archive/appl/A024/029/
http://www.esapubs.org/archive/appl/A024/029/
http://www.esapubs.org/archive/appl/A024/029/


Appendix D

Species list from the Mitchell grassland grazing treatments (Ecological Archives A024-029-A4).

Appendix E

Bray-Curtis dissimilarity measures from ANOSIM results from the grazing treatments (Ecological Archives A024-029-A5).

Appendix F

Results from ANOVAs conducted to assess the significance of the fixed effects from the grazing treatment analysis (Ecological
Archives A024-029-A6).

Appendix G

Species that did not respond significantly to grazing treatment (Ecological Archives A024-029-A7).

Appendix H

Species list and life-form for Mitchell grasslands in Queensland (Ecological Archives A024-029-A8).

Appendix I
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