32 research outputs found

    ZnO Nanoestructured Layers Processing with Morphology Control by Pulsed Electrodeposition

    Full text link
    The fabrication of nanostructured ZnO thin films is a critic process for a lot of applications of this semiconductor material. The final properties of this film depend fundamentally of the morphology of the sintered layer. In this paper a process is presented for the fabrication of ZnO nanostructured layers with morphology control by pulsed electrodeposition over ITO. Process optimization is achieved by pulsed electrodeposition and results are assessed after a careful characterization of both morphology and electrical properties. SEM is used for nucleation analysis on pulsed deposited samples. Optical properties like transmission spectra and Indirect Optical Band Gap are used to evaluate the quality of the obtained ZnO structures.Reyes Tolosa, MD.; Orozco Messana, J.; Damonte ., LC.; Hernández Fenollosa, MDLÁ. (2011). ZnO Nanoestructured Layers Processing with Morphology Control by Pulsed Electrodeposition. Journal of The Electrochemical Society. 158(7):452-455. doi:10.1149/1.35930044524551587Fath, P., Nussbaumer, H., & Burkhardt, R. (2002). Industrial manufacturing of semitransparent crystalline silicon POWER solar cells. Solar Energy Materials and Solar Cells, 74(1-4), 127-131. doi:10.1016/s0927-0248(02)00056-9Bruton, T. . (2002). General trends about photovoltaics based on crystalline silicon. Solar Energy Materials and Solar Cells, 72(1-4), 3-10. doi:10.1016/s0927-0248(01)00145-3Geiger, P., Hahn, G., Fath, P., & Bucher, E. (2002). Comparing improved state-of-the-art to former EFG Si-ribbons with respect to solar cell processing and hydrogen passivation. Solar Energy Materials and Solar Cells, 72(1-4), 155-163. doi:10.1016/s0927-0248(01)00160-xDonderis, V., Orozco, J., Cembrero, J., Curiel-Esparza, J., Damonte, L. C., & Hernández-Fenollosa, M. A. (2010). Doped Nanostructured Zinc Oxide Films Grown by Electrodeposition. Journal of Nanoscience and Nanotechnology, 10(2), 1387-1392. doi:10.1166/jnn.2010.1869Xu, L., Guo, Y., Liao, Q., Zhang, J., & Xu, D. (2005). Morphological Control of ZnO Nanostructures by Electrodeposition. The Journal of Physical Chemistry B, 109(28), 13519-13522. doi:10.1021/jp051007bZ. Zhanxia, Z. Yan, Y. Huacong, and M. Zhongquan , INEC Nanoelectronics Conference 2008. IEEE InternationalDu, Y., Zhang, M.-S., Wu, J., Kang, L., Yang, S., Wu, P., & Yin, Z. (2003). Optical properties of SrTiO 3 thin films by pulsed laser deposition. Applied Physics A: Materials Science & Processing, 76(7), 1105-1108. doi:10.1007/s00339-002-1998-zNakajima, A., Sugita, Y., Kawamura, K., Tomita, H., & Yokoyama, N. (1996). Si Quantum Dot Formation with Low-Pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 35(Part 2, No. 2B), L189-L191. doi:10.1143/jjap.35.l189Pauporté, T., & Lincot, D. (2000). Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochimica Acta, 45(20), 3345-3353. doi:10.1016/s0013-4686(00)00405-9Könenkamp, R., Word, R. C., & Godinez, M. (2005). Ultraviolet Electroluminescence from ZnO/Polymer Heterojunction Light-Emitting Diodes. Nano Letters, 5(10), 2005-2008. doi:10.1021/nl051501rMarí, B., Manjón, F. J., Mollar, M., Cembrero, J., & Gómez, R. (2006). Photoluminescence of thermal-annealed nanocolumnar ZnO thin films grown by electrodeposition. Applied Surface Science, 252(8), 2826-2831. doi:10.1016/j.apsusc.2005.04.024Marí, B., Cembrero, J., Manjón, F. J., Mollar, M., & Gómez, R. (2005). Raman measurements on nanocolumnar ZnO crystals. physica status solidi (a), 202(8), 1602-1605. doi:10.1002/pssa.200461196Wang, Q., Wang, G., Jie, J., Han, X., Xu, B., & Hou, J. G. (2005). Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition. Thin Solid Films, 492(1-2), 61-65. doi:10.1016/j.tsf.2005.06.046Marı́, B., Mollar, M., Mechkour, A., Hartiti, B., Perales, M., & Cembrero, J. (2004). Optical properties of nanocolumnar ZnO crystals. Microelectronics Journal, 35(1), 79-82. doi:10.1016/s0026-2692(03)00227-1Wang, J., Du, G., Zhang, Y., Zhao, B., Yang, X., & Liu, D. (2004). RETRACTED: Luminescence properties of ZnO films annealed in growth ambient and oxygen. Journal of Crystal Growth, 263(1-4), 269-272. doi:10.1016/j.jcrysgro.2003.11.059Leiter, F., Alves, H., Pfisterer, D., Romanov, N. G., Hofmann, D. M., & Meyer, B. K. (2003). Oxygen vacancies in ZnO. Physica B: Condensed Matter, 340-342, 201-204. doi:10.1016/j.physb.2003.09.031Pauporté, T., Bedioui, F., & Lincot, D. (2005). Nanostructured zinc oxide–chromophore hybrid films with multicolored electrochromic properties. J. Mater. Chem., 15(15), 1552-1559. doi:10.1039/b416419

    Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films

    Full text link
    [EN] The quality and properties of electrodeposited nanostructured ZnO films are improved when they are deposited on a crystal lattice-matching substrate. To this end, a highly conductive indium tin oxide substrate is covered with an interlayer of ZnO using direct-current magnetron sputtering. In this manuscript, we describe the effect of this interlayer on the morphological and optical properties of several nanostructured ZnO films grown by different electrodeposition methods. The thickness of the ZnO interlayer was varied starting from ultrathin layers of 10 nm all the way up to 230 nm as determined by ellipsonnetry. The structural and optical properties of the nanostructured ZnO films deposited on top of these interlayers were characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy and UV-visible spectroscopy. Optimum properties of the nanostructured ZnO films for application in thin-film optoelectronic devices are obtained when the ZnO interlayer has a thickness of approximately 45 nm. This is the case for all the electrodeposition methods used in this work.Reyes Tolosa, MD.; Alajami, M.; Montero Reguera, ÁE.; Damonte, L.; Hernández Fenollosa, MDLÁ. (2019). Influence of seed layer thickness on properties of electrodeposited ZnO nanostructured films. SN Applied Sciences. 1(10):1-9. https://doi.org/10.1007/s42452-019-1293-719110Marotti RE, Giorgi P, Machado G, Dalchiele EA (2006) Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures. Sol Energy Mater Sol Cells 90:2356–2361Marotti RE, Guerra DN, Bello C, Machado G (2004) Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Sol Energy Mater Sol Cells 82:85–103Jin ZC, Hamberg I, Grangvist CG (1988) Optical properties of sputter-deposited ZnO: Al thin films. J Appl Phys 64:5117–5131Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46Kiliç B, Wang L, Ozdemir O, Lu M, Tüzemen S (2013) One-dimensional (1D) ZnO nanowires dye sensitized solar cell. J Nanosci Nanotechnol 13:333–338Granqvist CG (2007) Transparent conductors as solar energy materials: a panoramic review. Sol Energy Mater Sol Cells 9:1529–1598Mallampati B, Nair SV, Ruda HE, Philipose U (2015) ZnO nanowire based photoconductor with high photoconductive gain. Mater Res Soc Symp Proc 1805:720–726Benlamri M, Bothe KM, Ma AM, Shoute G, Afshar A, Sharma H, Mohammadpour A, Gupta M, Cadien KC, Tsui YY, Shankar K, Barlage DW (2014) High-mobility solution-processed zinc oxide thin films on silicon nitride. Phys Status Solidi RRL 8:871–875Galstyan V, Comini E, Ponzoni A, Sberveglieri V, Sberveglieri G (2016) ZnO quasi-1D nanostructures: synthesis, modeling, and properties for applications in conductometric. Chem Sens 4:6–27Ayouchi R, Leinen D, Martin F, Gabas M, Dalchiele E, Ramos-Barrado JR (2003) Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis. Thin Solid Films 426:68–77Rahmane S, Aida MS, Chala A, Temam HB, Djouadi MA (2007) Elaboration of transparent undoped ZnO and Al-doped ZnO thin films by spray pyrolysis and their properties. Plasma Process Polym 4:356–358Zhu G, Zhou Y, Wang S, Yang R, Ding Y, Wang X, Bando Y, Wang ZL (2012) Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 23:055604–055610Hossein A, Kar P, Farsinezhad S, Sharma H, Shankar K (2015) Effect of sol stabilizer on the structure and electronic properties of solution-processed ZnO thin films. RSC Adv 5:87007–87018Majumder SB, Jain M, Dobal PS, Katiyar RS (2003) Investigations on solution derived aluminium doped zinc oxide thin films. Mater Sci Eng 103:16–25Gao XD, Peng F, Li XM, Yu WD, Qiu JJ (2007) Growth of highly oriented ZnO films by the two-step electrodeposition technique. J Mater Sci 42:9638–9644Dalchiele EA, Giorgi P, Marotti RE, Martín F, Ramos-Barrado JR, Ayouci R, Leinen D (2001) Electrodeposition of ZnO Thin Films on n-Si (100). Sol Energy Mater Sol Cells 70:245–254Craciun V, Elders J, Gardeniev JGE, Boyd IW (1994) Characteristics of high quality ZnO thin films deposited by pulsed laser deposition. Appl Phys Lett 65:2963–2965Bang KH, Hwang DK, Myoung JM (2003) Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering. Appl Surf Sci 207:359–364Hayashi Y, Kondo K, Murai K, Moriga T, Nakabayashi I, Fukumoto H, Tominag K (2004) ZnO–SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets. Vacuum 74:607–611Minami T, Nanto H, Takata S (1983) UV emission from sputtered zinc oxide thin films. Thin Solid Films 109:379–384Gu CD, Li J, Lian JS, Zheng GQ (2007) Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass. Appl Surf Sci 253:7011–7015Korber C, Suffner J, Klein A (2010) Surface energy controlled preferential orientation of thin films. J Phys D Appl Phys 43:055301–055304Dadgour HF, Endo K, De VK, Banerjee K (2010) Grain-orientation induced work function variation in nanoscale metal-gate transistors; part I: modeling, analysis, and experimental validation. IEEE Trans Electron Devices 57:2504–2514Sadewasser S, Glatzel T, Schuler S, Nishiwaki S, Kaigawa R, Lux-Steiner MC (2003) Kelvin probe force microscopy for the nano scale characterization of chalcopyrite solar cell materials and devices. Thin Solid Films 257:431–432Boubenia S, Dahiya AS, Poulin-Vittrant G, Morini F, Nadaud K, Alquier DA (2017) Facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Sci Rep 7:15187–15196Ghayour H, Rezaie HR, Mirdamadi S, Nourbakhsh AA (2011) The effect of seed layer thickness on alignment and morphology of ZnO nanorods. Vacuum 86:101–105Bae YS, Kim DC, Ahn CH, Kim JH, Cho HK (2010) Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures. Surf Interface Anal 42:978–982Donderis V, Hernández-Fenollosa MA, Damonte LC, Marí B, Cembrero J (2007) Enhancement of surface morphology and optical properties of nanocolumnar ZnO films. Superlattices Microstruct 42:461–467Chichibu SF, Yoshida T, Onuma T, Nakanishi H (2002) Helicon-wave-excited-plasma sputtering epitaxy of ZnO on sapphire (0001) substrates. J Appl Phys 91:874–877Bouderbala M, Hamzaoui S, Amrani B, Reshak AH, Adnane M, Sahraoui T, Zerdali M (2008) Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films. Phys B 403:3326–3330Kishimoto S, Yamamoto T, Nakagawa Y, Ikeda K, Makino H, Yamada T (2006) Dependence of electrical and structural properties on film thickness of undoped ZnO thin films prepared by plasma-assisted electron beam deposition. Superlattices Microstruct 39:306–313Suchea M, Christoulakis S, Katharakis M, Vidakis N, Koudoumas E (2009) Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films. Thin Solid Films 517:4303–4306Mridha S, Basak D (2007) Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater Res Bull 42:875–882Reyes Tolosa MD, Orozco-Messana J, Lima ANC, Camaratta R, Pascual M, Hernandez-Fenollosa MA (2011) Electrochemical deposition mechanism for ZnO nanorods: diffusion coefficient and growth models. J Electrochem Soc 158:107–110Reyes Tolosa MD, Orozco-Messana J, Damonte LC, Hernandez-Fenollosa MA (2011) ZnO nanoestructured layers processing with morphology control by pulsed electrodeposition. J Electrochem Soc 158:452–455Laukaitis G, Lindroos S, Tamulevicius S, Leskela M (2001) Stress and morphological development of CdS and ZnS thin films during the SILAR growth on (1 0 0) GaAs. Appl Surf Sci 185:134–139Ludwig W, Ohm W, Correa-Hoyos JM, Zhao Y, Lux-Steiner MC, Gledhill S (2013) Electrodeposition parameters for ZnO nanorod arrays for photovoltaic applications. Phys Status Solidi A 210:1557–1563Chopra KL, Das SR (1983) Thin film solar cells. Springer, New YorkOhm W, Riedel W, Askünger Ü, Heinemann MD, Kaufmann CA, Lopez Garcia J, Izquierdo V, Fontané X, Goislard T, Lux-Steiner MC, Gledhill S (2015) An overview of technological aspects of Cu(In, Ga)Se2 solar cell architectures incorporating ZnO nanorod arrays. Phys Status Solidi A 212:76–87Wang Q, Wang G, Jie J, Han X, Xu B, Hou JG (2005) Annealing effect on optical properties of ZnO films fabricated by cathodic electrodeposition described. Thin Solid Films 492:61–65Tao Y, Fu M, Zhao A, He D, Wang Y (2010) The effect of seed layer on morphology of ZnO nanorod arrays grown by hydrothermal method. J Alloys Compd 489:99–102El-Zahed H, El- Korashy A, Abdel Rahman M (2003) Effect of heat treatment on some of the optical parameters of Cu9Ge11Te80 films. Vacuum 68:19–27Kumar M, Sasikumar C (2014) Electrodeposition of nanostructured ZnO thin film. Am J Mater Sci Eng 23:18–23Wang J, Chen R, Xiang L, Komarneni S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44:7357–737

    Electrochemical Deposition Mechanism for ZnO Nanorods: Diffusion Coefficient and Growth Models

    Full text link
    Fabrication of nanostructured ZnO thin films is a critical process for many applications based on semiconductor devices. So on understanding of the electrochemical deposition mechanism is also fundamental for knowing the optimal conditions on growth of ZnO nanorods by electrodeposition. In this paper the electrochemical mechanism for ZnO nanorods formation is studied. Results are based on the evolution of the diffusion coefficient using the Cotrell equation, and different growth models proposed by Scharifcker and Hills for nucleation and growth.Reyes Tolosa, MD.; Orozco Messana, J.; Lima, A.; Camaratta, R.; Pascual Guillamón, M.; Hernández Fenollosa, MDLÁ. (2011). Electrochemical Deposition Mechanism for ZnO Nanorods: Diffusion Coefficient and Growth Models. Journal of The Electrochemical Society. 158(11):107-110. doi:10.1149/0.020111jes1071101581

    Low cost hybrid solar cell integration on wall tiles

    Full text link
    On this paper the first Building Integrated Hybrid Photovoltaic (BIHPV) cell obtained on a commercial tile is presented. The experimental techniques used allow a future low cost development of these cells for its massive use on facades for buildings. The basic concept includes a metal projected layer as back contact with an electron injection layer of electrodeposited ZnO, an organic PBCBM/P3HT photovoltaic cell with a closing TCO thin film on top. Integration with the substrate problems have been solved and allow further work on cell performance and durability.Reyes Tolosa, MD.; Orozco Messana, J.; Hernández Fenollosa, MDLÁ.; Camaratta, R.; Niedersberg Correia, Á.; Bolink, HJ.; Soriano, A.... (2011). Low cost hybrid solar cell integration on wall tiles. ECS Transactions. 41(4):141-146. doi:10.1149/1.3628619S14114641

    Gain-of-Function Mutations R249C and S250C in Complement C2 Protein Increase C3 Deposition in the Presence of C-Reactive Protein

    Get PDF
    The impairment of the alternative complement pathway contributes to rare kidney diseases such as atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). We recently described an aHUS patient carrying an exceptional gain-of-function (GoF) mutation (S250C) in the classical complement pathway component C2 leading to the formation of hyperactive classical convertases. We now report the identification of the same mutation and another C2 GoF mutation R249C in two other patients with a glomerulopathy of uncertain etiology. Both mutations stabilize the classical C3 convertases by a similar mechanism. The presence of R249C and S250C variants in serum increases complement-dependent cytotoxicity (CDC) in antibody-sensitized human cells and elevates deposition of C3 on ELISA plates coated with C-reactive protein (CRP), as well as on the surface of glomerular endothelial cells. Our data justify the inclusion of classical pathway genes in the genetic analysis of patients suspected of complement-driven renal disorders. Also, we point out CRP as a potential antibody-independent trigger capable of driving excessive complement activation in carriers of the GoF mutations in complement C2

    Development and validation of a nomogram to predict kidney survival at baseline in patients with C3 glomerulopathy

    Get PDF
    10 p.-4 fig.-2 tab. 1 graph. abst.Background: C3 glomerulopathy is a rare and heterogeneous complement-driven disease. It is often challenging to accurately predict in clinical practice the individual kidney prognosis at baseline. We herein sought to develop and validate a prognostic nomogram to predict long-term kidney survival.Methods: We conducted a retrospective, multicenter observational cohort study in 35 nephrology departments belonging to the Spanish Group for the Study of Glomerular Diseases. The dataset was randomly divided into a training group (n = 87) and a validation group (n = 28). The least absolute shrinkage and selection operator (LASSO) regression was used to screen the main predictors of kidney outcome and to build the nomogram. The accuracy of the nomogram was assessed by discrimination and risk calibration in the training and validation sets.Results: The study group comprised 115 patients, of whom 46 (40%) reached kidney failure in a median follow-up of 49 months (range 24–112). No significant differences were observed in baseline estimated glomerular filtration rate (eGFR), proteinuria or total chronicity score of kidney biopsies, between patients in the training versus those in the validation set. The selected variables by LASSO were eGFR, proteinuria and total chronicity score. Based on a Cox model, a nomogram was developed for the prediction of kidney survival at 1, 2, 5 and 10 years from diagnosis. The C-index of the nomogram was 0.860 (95% confidence interval 0.834–0.887) and calibration plots showed optimal agreement between predicted and observed outcomes.Conclusions: We constructed and validated a practical nomogram with good discrimination and calibration to predict the risk of kidney failure in C3 glomerulopathy patients at 1, 2, 5 and 10 years.Work on this study was supported by the Instituto de Salud Carlos III / Fondo Europeo de Desarrollo Regional (ISCIII/FEDER; grants PI16/01685 and PI19/1624) and Red de Investigación Renal (RD12/0021/0029; to M.P.) and the Autonomous Region of Madrid (S2017/BMD-3673; to M.P.). S.R.d.C. is supported by the Ministerio de Economia y Competitividad (grant PID2019-104912RB-I00) and the Autonomous Region of Madrid (grant S2017/BMD-3673).Peer reviewe

    Longitudinal change in proteinuria and kidney outcomes in C3 glomerulopathy

    Get PDF
    11 p.-4 fig.-4 tab.Introduction: The association between a change in proteinuria over time and its impact in kidney prognosis has not been analyzed in C3 glomerulopathy. This study aims to investigate the association between the longitudinal change in proteinuria and the risk of kidney failure.Methods: Retrospective, multicenter observational cohort study in 35 nephrology departments belonging to the Spanish Group for the Study of Glomerular Diseases (GLOSEN). Patients diagnosed with C3 glomerulopathy between 1995 and 2020 were enrolled. A joint modeling of linear mixed-effects models was applied to assess the underlying trajectory of a repeatedly measured proteinuria, and a Cox model to evaluate the association of this trajectory with the risk of kidney failure.Results: The study group consisted of 85 patients, 70 C3 glomerulonephritis and 15 dense deposit disease, with a median age of 26 years (range 13-41). During a median follow-up of 42 months, 25 patients reached kidney failure. The longitudinal change in proteinuria showed a strong association with the risk of this outcome, with a doubling of proteinuria levels resulting in a 2.5-fold increase of the risk. A second model showed that a ≥ 50% proteinuria reduction over time was significantly associated with a lower risk of kidney failure (HR: 0.79; 95% CI : 0.56-0.97; p < 0.001). This association was also found when the ≥50% proteinuria reduction was observed within the first 6 and 12 months of follow-up.Conclusion: The longitudinal change in proteinuria is strongly associated with the risk of kidney failure. The change in proteinuria over time can provide clinicians a dynamic prediction of kidney outcomes.This study was supported by the Instituto de Salud Carlos III/Fondo Europeo de Desarrollo Regional (ISCIII/FEDER) grant PI16/01685 and PI19/1624, and Red de Investigación Renal (RedInRen) (RD12/0021/0029) (to M.P.), the Autonomous Region of Madrid (S2017/BMD-3673) (to M.P.); E.G.d.J. was supported by the Spanish ‘Ministerio de Ciencia, Innovación y Universidades’ (RYC-2013-13395 and RTI2018-095955-B-100); S.R.d.C. was supported by Ministerio de Economía y Competitividad/FEDER grant SAF2015-66287R and Autonomous Region of Madrid grant S2017/BMD3673.Peer reviewe

    La serie de Fibonacci

    Full text link
    En este objeto de aprendizaje se centra el estudio de los fractales en la serie de Fibonacci. En terminos de aplicaciones la serie de fibonacci aparece en la naturaleza de una forma sorprendentemente repetitiva como el numero de petalos de una flor, los girasoles que tienen 55 espirales en un sentido y 89 en otro, o bien 89 y 144, las margaritas que presentan semillas en forma de 21 y 34 espirales, las piñas, sus espirales centrales se suceden en 21 y 34 espirales y las conchas de moluscos que si nos fijamos en ellas veremos también una sucesión perfecta que cumple a la perfección esta serie matemática.https://polimedia.upv.es/visor/?id=45266d30-4fb2-11e9-ac3d-5de94cb9912aHernández Fenollosa, MDLÁ. (2019). La serie de Fibonacci. http://hdl.handle.net/10251/121662DE

    Conociendo fractales

    Full text link
    Durante este polimedia se describen y analizan los fractales como estructuras geométricas irregulares con detalle infinito, donde la estructura básica se repite a diferentes escalas.https://polimedia.upv.es/visor/?id=48259bd0-3f3d-11e9-92a7-bdcb9f1b1882Hernández Fenollosa, MDLÁ. (2019). Conociendo fractales. http://hdl.handle.net/10251/121669DE

    Energía Solar Fotovoltaica

    Full text link
    Este polimedia tiene como objetivo acercar al estudiante al campo de la energia solar fotovoltaica. Dentro de los conceptos expuestos es de un nivel introductorio y se exponen desde sus origenes todas las definiciones y leyes que aparecen. Se desea poner de manifiesto la relación que existe entre el tipo de materiales utilizados, para fabricar distintos dispositivos semiconductores, y la posterior respuesta de estos. Se termina la exposición con un ejemplo muy didactico y cercano de elaboracion de celulas solares fotovoltaicas a partir de materiales caseros.https://polimedia.upv.es/visor/?id=3cc78fe5-c509-804a-9f3b-79d108b28dc4Hernández Fenollosa, MDLÁ. (2013). Energía Solar Fotovoltaica. http://hdl.handle.net/10251/2992
    corecore