1,230 research outputs found

    A Comparative Study of Different Sorbents in the Context of Direct Air Capture (DAC): Evaluation of Key Performance Indicators and Comparisons

    Get PDF
    Direct air capture can be based on an adsorption system, and the used sorbent (chemisorbents or physisorbents) influences process. In this work, two amine-functionalized sorbents, as chemisorbents, and three different metal organic frameworks, as physisorbents, are considered and compared in terms of some key performance indicators. This was carried out by developing a mathematical model describing the adsorption and desorption stages. An independent analysis was carried out in order to verify data reported in the literature. Results show that the equilibrium loading is a critical parameter for adsorption capacity, energy consumption, and cost. The considered metal organic frameworks are characterized by a lower equilibrium loading (10−4 mol/kg) compared to chemisorbents (10−1 mol/kg). For this reason, physisorbents have higher overall energy consumptions and costs, while capturing a lower amount of carbon dioxide. A reasonable agreement is found on the basis of the operating conditions of the Climeworks company, modelling the use of the same amine cellulose-based sorbent. The same order of magnitude is found for total costs (751 USD/tonneCO2 for our analysis, compared to the value of 600 USD/tonneCO2 proposed by this company)

    Environmental performance of different sorbents used for direct air capture

    Get PDF
    Currently, conventional carbon dioxide (CO2) mitigation solutions may be insufficient to achieve the stringent environmental targets set for the coming decades. CO2 removal (CDR) technologies, such as direct air capture (DAC), capturing CO2 from the ambient air, are required. In this research, an independent life cycle assessment (LCA) of DAC adsorption systems based on three physisorbents (metal organic frameworks) and two chemisorbents (amine functionalized sorbents) is presented. These capture processes have been optimised by us in previous work. Results show that for the overall capture process, negative CO2 emissions are ensured by using a cellulose-based amine sorbent (cradle-to-gate) ensuring even the net removal of CO2 from the atmosphere (cradle-to-grave). Processes using physisorbents have poorer performances. Chemisorbents yield operating conditions allowing lower impacts on the environment. In 2050, these processes could reduce climate change but can generate other environmental impacts. With the aim to have better environmental performances of DAC systems, future research should be focused on improving the physical properties of sorbents such as the silica gel based amine sorbent to increase their capture capacities. If metal organic frameworks are to be used, it is necessary to drop their energy consumption (by increasing the loading) and the required mass of sorbent

    Getting to the root of student ‘dis-satisfaction’ at the University of East London

    Get PDF
    Every year, when the results of student surveys are published, subject librarians pore over them and try to uncover why some programmes give lower satisfaction scores for the library than others, even when taught within the same school, on the same campus and provided with the same services. This article is an account of how two subject librarians responded to relatively low satisfaction scores for a few programmes within their schools, and the findings they made in the process. It also outlines the response and findings of the library’s Academic Services & Skills Manager following publication of the most recent International Student Barometer results

    Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Van Allen Probes Mission

    Get PDF
    The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA’s Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10’s of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results

    Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data

    Get PDF
    Abstract We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do

    Spin Dynamics at Very Low Temperature in Spin Ice Dy2_2Ti2_2O7_7

    Full text link
    We have performed AC susceptibility and DC magnetic relaxation measurements on the spin ice system Dy2_2Ti2_2O7_7 down to 0.08 K. The relaxation time of the magnetization has been estimated below 2 K down to 0.08 K. The spin dynamics of Dy2_2Ti2_2O7_7 is well described by using two relaxation times (τS\tau_{\rm S} (short time) and τL\tau_{\rm L} (long time)). Both τS\tau_{\rm S} and τL\tau_{\rm L} increase on cooling. Assuming the Arrhenius law in the temperature range 0.5-1 K, we obtained an energy barrier of 9 K. Below 0.5 K, both τS\tau_{\rm S} and τL\tau_{\rm L} show a clear deviation from the thermal activated dynamics toward temperature independent relaxation, suggesting a quantum dynamics.Comment: 4 page

    The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft

    Get PDF
    This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented

    Unconventional magnets in external magnetic fields

    Full text link
    This short review surveys phenomena observed when a magnetic field is applied to a system of localised spins on a lattice. Its focus is on frustrated magnets in dimension d2d \geq 2. The interplay of field and entropy is illustrated in the context of their unusual magnetocaloric properties, where field-tuned degeneracies assert themselves. Magnetisation plateaux can reveal the physics of fluctuations, with unusual excitations (such as local modes, extended string defects or monopoles) involved in plateau termination. Field-tuning lattice geometry is the final topic, where mechanisms for dimensional reduction and conversion between different lattice types are discussed.Comment: Plenary Talk at HFM 2008 Conferenc

    Universal Fluctuations of the Danube Water Level: a Link with Turbulence, Criticality and Company Growth

    Full text link
    A global quantity, regardless of its precise nature, will often fluctuate according to a Gaussian limit distribution. However, in highly correlated systems, other limit distributions are possible. We have previously calculated one such distribution and have argued that this function should apply specifically, and in many instances, to global quantities that define a steady state. Here we demonstrate, for the first time, the relevance of this prediction to natural phenomena. The river level fluctuations of the Danube are observed to obey our prediction, which immediately establishes a generic statistical connection between turbulence, criticality and company growth statistics.Comment: 5 pages, 1 figur
    corecore