46 research outputs found

    Summary of along-track data from the earth radiation budget satellite for several representative ocean regions

    Get PDF
    For several days in January and August 1985, the Earth Radiation Budget Satellite, a component of the Earth Radiation Budget Experiment (ERBE), was operated in an along-track scanning mode. A survey of radiance measurements taken in this mode is given for five ocean regions: the north and south Atlantic, the Arabian Sea, the western Pacific north of the Equator, and part of the Intertropical Convergence Zone. Each overflight contains information about the clear scene and three cloud categories: partly cloudy, mostly cloudy, and overcast. The data presented include the variation of longwave and shortwave radiance in each scene classification as a function of viewing zenity angle during each overflight of one of the five target regions. Several features of interest in the development of anisotropic models are evident, including the azimuthal dependence of shortwave radiance that is an essential feature of shortwave bidirectional models. The data also demonstrate that the scene classification algorithm employed by the ERBE results in scene classifications that are a function of viewing geometry

    Summary of along-track data from the Earth radiation budget satellite for several major desert regions

    Get PDF
    For several days in January and August 1985, the Earth Radiation Budget Satellite, a component of the Earth Radiation Budget Experiment (ERBE), was operated in an along-track scanning mode. A survey of radiance measurements is given for four desert areas in Africa, the Arabian Peninsula, Australia, and the Sahel region of Africa. Each overflight provides radiance information for four scene categories: clear, partly cloudy, mostly cloudy, and overcast. The data presented include the variation of radiance in each scene classification as a function of viewing zenith angle during each overflight of the five target areas. Several features of interest in the development of anisotropic models are evident, including day-night differences in longwave limb darkening and the azimuthal dependence of short wave radiance. There is some evidence that surface features may introduce thermal or visible shadowing that is not incorporated in the usual descriptions of the anisotropic behavior of radiance as viewed from space. The data also demonstrate that the ERBE scene classification algorithms give results that, at least for desert surfaces, are a function of viewing geometry

    Airborne lidar measurements of ozone during the 1989 airborne Arctic stratospheric expedition

    Get PDF
    The NASA/NOAA Airborne Arctic Stratospheric Expedition (AASE) was conducted during the winter to study the conditions leading to possible ozone (O3) destruction in the wintertime Arctic stratosphere. As part of this experiment, the NASA-Langley airborne differential absorption lidar (DIAL) system was configured for operation on the NASA-Ames DS-8 aircraft to make measurements of O3 profiles from about 1 km above the aircraft to altitudes of 22 to 26 km. The airborne DIAL system remotely sensed O3 above the DC-8 by transmitting two laser beams at 10 Hz using wavelengths of 301.5 and 311 nm. Large scale distributions of O3 were obtained on 15 long range flights into the polar vortex during the AASE. Selected data samples are presented of O3 observed during these flights, general trends observed in O3 distributions, and correlations between these measurements and meteorological and chemical parameters. The O3 distribution observed on the first flight of the DC-8 into the polar vortex on Jan. 6 reflected the result of diabatic cooling of the air inside the vortex during the winter compared to the warmer air outside the vortex. On a potential temperature surface, the O3 mixing ratio generally increases when going from outside to inside the vortex

    Tropospheric ozone and aerosol variability observed at high latitudes with an airborne lidar

    Get PDF
    Large-scale summertime (July-August) distributions of O3 and aerosols were observed in a broad range of atmosphere conditions over the tundra, ice, and ocean regions near Alaska in 1988 and over the lowlands and boreal forests of Canada in 1990. The tropospheric O3 budget in the high-latitude regions was found to be strongly influenced by stratospheric intrusions, and deposition at the surface was found to be the main sink for O3 in the troposphere. Enhanced levels of O3 were observed in plumes from fires in Alaska and Canada. This paper discusses the large-scale variability of O3 and aerosols observed in the high-latitude regions during these field experiments

    Observation of pollution plume capping by a tropopause fold

    Get PDF
    Airborne lidar measurements reveal a case in which a layer of high-ozone air extruding from a tropopause fold appears to cap a pollution plume and force it to spread out in the lower troposphere. The morphology of the high-ozone layer resembles a three-dimensional model of tropopause fold evolution that produces a low-altitude potential vorticity tube. This is a mechanism that can complete the irreversible transfer of air from the stratosphere, and can also affect pollution levels at the surface if the capping layer reaches the top of the boundary layer.United States. National Aeronautics and Space Administration (Grant NAG1-2306

    The 2013 Rim Fire: Implications for Predicting Extreme Fire Spread, Pyroconvection, and Smoke Emissions

    Get PDF
    Abstract The 2013 Rim Fire, which burned over 104,000 ha, was one of the most severe fire events in California's history, in terms of its rapid growth, intensity, overall size, and persistent smoke plume. At least two large pyrocumulonimbus (pyroCb) events were observed, allowing smoke particles to extend through the upper troposphere over a large portion of the Pacific Northwest. However, the most extreme fire spread was observed on days without pyroCb activity or significant regional convection. A diverse archive of ground, airborne, and satellite data collected during the Rim Fire provides a unique opportunity to examine the conditions required for both extreme spread events and pyroCb development. Results highlight the importance of upper-level and nocturnal meteorology, as well as the limitations of traditional fire weather indices. The Rim Fire dataset also allows for a detailed examination of conflicting hypotheses surrounding the primary source of moisture during pyroCb development. All pyroCbs were associated with conditions very similar to those that produce dry thunderstorms. The current suite of automated forecasting applications predict only general trends in fire behavior, and specifically do not predict 1) extreme fire spread events and 2) injection of smoke to high altitudes. While these two exceptions are related, analysis of the Rim Fire shows that they are not predicted by the same set of conditions and variables. The combination of numerical weather prediction data and satellite observations exhibits great potential for improving automated regional-scale forecasts of fire behavior and smoke emissions

    Lidar measurements of ozone and aerosol distributions during the 1992 airborne Arctic stratospheric expedition

    Get PDF
    The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km

    Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations

    Get PDF
    Arctic ozone depletion events (ODEs) are caused by halogen catalyzed ozone loss. In situ chemistry, advection of ozone-poor air mass, and vertical mixing in the lower troposphere are important factors affecting ODEs. To better characterize the ODEs, we analyze the combined set of surface, ozonesonde, and aircraft in situ measurements of ozone and bromine compounds during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS), the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC), and the Arctic Intensive Ozonesonde Network Study (ARCIONS) experiments (April 2008). Tropospheric BrO columns retrieved from satellite measurements and back trajectory calculations are also used to investigate the characteristics of observed ODEs. In situ observations from these field experiments are inadequate to validate tropospheric BrO columns derived from satellite measurements. In view of this difficulty, we construct an ensemble of tropospheric column BrO estimates from two satellite (OMI and GOME-2) measurements and with three independent methods of calculating stratospheric BrO columns. Furthermore, we select analysis methods that do not depend on the absolute magnitude of column BrO, such as time-lagged correlation analysis of ozone and tropospheric column BrO, to understand characteristics of ODEs. Time-lagged correlation analysis between in situ (surface and ozonesonde) measurements of ozone and satellite derived tropospheric BrO columns indicates that the ODEs are due to either local halogen-driven ozone loss or short-range (∼1 day) transport from nearby regions with ozone depletion. The effect of in situ ozone loss is also evident in the diurnal variation difference between low (10th and 25th percentiles) and higher percentiles of surface ozone concentrations at Alert, Canada. Aircraft observations indicate low-ozone air mass transported from adjacent high-BrO regions. Correlation analyses of ozone with potential temperature and time-lagged tropospheric BrO column show that the vertical extent of local ozone loss is surprisingly deep (1–2 km) at Resolute and Churchill, Canada. The unstable boundary layer during ODEs at Churchill could potentially provide a source of free-tropospheric BrO through convective transport and explain the significant negative correlation between free-tropospheric ozone and tropospheric BrO column at this site

    Observations of convective and dynamical instabilities in tropopause folds and their contribution to stratosphere-troposphere exchange

    Get PDF
    With aircraft-mounted in situ and remote sensing instruments for dynamical, thermal, and chemical measurements we studied two cases of tropopause folding. In both folds we found Kelvin-Helmholtz billows with horizontal wavelength of ∼900 m and thickness of ∼120 m. In one case the instability was effectively mixing the bottomside of the fold, leading to the transfer of stratospheric air into the troposphere. Also, we discovered in both cases small-scale secondary ozone maxima shortly after the aircraft ascended past the topside of the fold that corresponded to regions of convective instability. We interpreted this phenomenon as convectively breaking gravity waves. Therefore we posit that convectively breaking gravity waves acting on tropopause folds must be added to the list of important irreversible mixing mechanisms leading to stratosphere-troposphere exchange.United States. National Aeronautics and Space Administration (Grant NAG2-1105)United States. National Aeronautics and Space Administration (Grant NAGl-1758)United States. National Aeronautics and Space Administration (Grant NAGl-1901
    corecore