12 research outputs found

    Robust simplifications of multiscale biochemical networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques allowing to simplify models without loosing their main properties. In systems biology we also need to compare models or to couple them as parts of larger models. In these situations reduction to a common level of complexity is needed.</p> <p>Results</p> <p>We propose a systematic treatment of model reduction of multiscale biochemical networks. First, we consider linear kinetic models, which appear as "pseudo-monomolecular" subsystems of multiscale nonlinear reaction networks. For such linear models, we propose a reduction algorithm which is based on a generalized theory of the limiting step that we have developed in <abbrgrp><abbr bid="B1">1</abbr></abbrgrp>. Second, for non-linear systems we develop an algorithm based on dominant solutions of quasi-stationarity equations. For oscillating systems, quasi-stationarity and averaging are combined to eliminate time scales much faster and much slower than the period of the oscillations. In all cases, we obtain robust simplifications and also identify the critical parameters of the model. The methods are demonstrated for simple examples and for a more complex model of NF-<it>Îş</it>B pathway.</p> <p>Conclusion</p> <p>Our approach allows critical parameter identification and produces hierarchies of models. Hierarchical modeling is important in "middle-out" approaches when there is need to zoom in and out several levels of complexity. Critical parameter identification is an important issue in systems biology with potential applications to biological control and therapeutics. Our approach also deals naturally with the presence of multiple time scales, which is a general property of systems biology models.</p

    Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990.

    Get PDF
    BACKGROUND: Intrapartum hypoxic events ("birth asphyxia") may result in stillbirth, neonatal or postneonatal mortality, and impairment. Systematic morbidity estimates for the burden of impairment outcomes are currently limited. Neonatal encephalopathy (NE) following an intrapartum hypoxic event is a strong predictor of long-term impairment. METHODS: Linear regression modeling was conducted on data identified through systematic reviews to estimate NE incidence and time trends for 184 countries. Meta-analyses were undertaken to estimate the risk of NE by sex of the newborn, neonatal case fatality rate, and impairment risk. A compartmental model estimated postneonatal survivors of NE, depending on access to care, and then the proportion of survivors with impairment. Separate modeling for the Global Burden of Disease 2010 (GBD2010) study estimated disability adjusted life years (DALYs), years of life with disability (YLDs), and years of life lost (YLLs) attributed to intrapartum-related events. RESULTS: In 2010, 1.15 million babies (uncertainty range: 0.89-1.60 million; 8.5 cases per 1,000 live births) were estimated to have developed NE associated with intrapartum events, with 96% born in low- and middle-income countries, as compared with 1.60 million in 1990 (11.7 cases per 1,000 live births). An estimated 287,000 (181,000-440,000) neonates with NE died in 2010; 233,000 (163,000-342,000) survived with moderate or severe neurodevelopmental impairment; and 181,000 (82,000-319,000) had mild impairment. In GBD2010, intrapartum-related conditions comprised 50.2 million DALYs (2.4% of total) and 6.1 million YLDs. CONCLUSION: Intrapartum-related conditions are a large global burden, mostly due to high mortality in low-income countries. Universal coverage of obstetric care and neonatal resuscitation would prevent most of these deaths and disabilities. Rates of impairment are highest in middle-income countries where neonatal intensive care was more recently introduced, but quality may be poor. In settings without neonatal intensive care, the impairment rate is low due to high mortality, which is relevant for the scale-up of basic neonatal resuscitation

    Neurological Examination of the Newborn Infant

    No full text
    A simple neurological screening examination should be performed on all term and preterm newborn infants, as part of the general medical examination. A full comprehensive neurological examination (NE) of the newborn infant should fulfill diagnostic and prognostic aims. As far as diagnosis is concerned, the NE needs to assess the severity of the acute (or subacute) brain dysfunction and to select those babies who may benefit from therapeutic hypothermia; the cooled newborn babies need to be assessed with serial NE during the first days after birth. As to the prognostic power of NE, repeated longitudinal assessment is needed in order to depict a developmental trajectory that better predicts the developmental outcome. The NE available for preterm and term newborn infants are discussed in relation to their peculiarities and strengths
    corecore