88 research outputs found

    State Ownership and Banks Information Rents: Evidence from China

    Get PDF
    In a lending relationship, a bank with an information advantage regarding its client tends to hold up the borrower and charge higher interest rates. We conjecture that state-owned enterprises (SOEs), with worse information asymmetry, are subject to greater informationrents. State-owned banks place less emphasis on information production and hence extract lower rents compared to profit maximizing private banks. We use the decline of loan interest rates around the borrowers’ equity initial public offerings (IPOs) as the proxy of banks’ information rents. We find SOEs in China experiencelarger declines in loan interest rates around their IPOs; the central government-controlled Big Four banks exhibit smaller declines in rates they charge, and their rate declines concentrate on loans made to SOEs

    Excessively tilted fiber grating based Fe3O4 saturable absorber for passively mode-locked fiber laser

    Get PDF
    A novel approach to saturable absorber (SA) formation is presented by taking advantage of the mode coupling property of excessively tilted fiber grating (Ex-TFG). Stable mode-locked operation can be conveniently achieved based on the interaction between Ex- TFG coupled light and deposited ferroferric-oxide (Fe3O4) nanoparticles. The central wavelength, bandwidth and single pulse duration of the output are 1595 nm, 4.05 nm, and 912 fs, respectively. The fiber laser exhibits good long-term stability with signal-to-noise ratio (SNR) of 67 dB. For the first time, to the best of our knowledge, Ex-TFG based Fe3O4 SA for mode-locked fiber laser is demonstrated

    A case report of anti-GAD65 antibody-positive autoimmune encephalitis in children associated with autoimmune polyendocrine syndrome type-II and literature review

    Get PDF
    BackgroundGlutamic acid decarboxylase (GAD) is the rate-limiting enzyme for the synthesis of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Antibodies against glutamic acid decarboxylase (GAD) are associated with various neurologic conditions described in patients, including stiff person syndrome, cerebellar ataxia, refractory epilepsy, and limbic and extra limbic encephalitis. While there are few case reports and research on anti-GAD65 antibody-associated encephalitis in adults, such cases are extremely rare in pediatric cases.MethodsFor the first time, we report a case of anti-GAD65-positive autoimmune encephalitis associated with autoimmune polyendocrine syndrome (APS) type II. We reviewed previously published pediatric cases of anti-GAD65 autoimmune encephalitis to discuss their clinical features, laboratory tests, imaging findings, EEG patterns, and prognosis.Case presentationAn 8-year-old, male child presented to the outpatient department after experiencing generalized convulsions for twenty days. The child was admitted for epilepsy and had received oral sodium valproate (500 mg/day) in another center, where investigations such as USG abdomen and MRI brain revealed no abnormalities, however, had abnormal EEG with diffuse mixed activity in the left anterior middle prefrontal temporal region. On the follow-up day, a repeat blood test showed a very low serum drug concentration of sodium valproate hence the dose was increased to 750 mg/day. Then, the child experienced adverse effects including increased sleep, thirst, and poor appetite, prompting the parents to discontinue the medication. A repeat MRI showed increased signals on FLAIR sequences in the right hippocampus hence admitted for further management. The child's past history included a diagnosis of hypothyroidism at the age of 4, and receiving levothyroxine 75 mcg once daily. His parents are healthy with no history of any similar neurological, autoimmune, or genetic diseases, but his uncle had a history of epilepsy. At presentation, he had uncontrolled blood glucose levels with elevated HbA1c levels. Additionally, the serum and CSF autoantibodies were positive against the anti-GAD65 antibody with the titer of 1:100 and 1:32 respectively. The patient was managed with a mixed type of insulin regimen and received first-line immunotherapy (intravenous immunoglobulin, IVIG) for five consecutive days, followed by oral prednisone and sodium valproate as an antiepileptic drug. Upon achieving a favorable clinical outcome, the patient was discharged with oral medications.ResultsAmong the 15 pediatric patients reported in this literature, nine presented with limbic encephalitis (LE), three with extralimbic encephalitis (ELE), and three with a combination of limbic and extralimbic encephalitis. Most of these cases exhibited T2-W FLAIR hyperintensities primarily localized to the temporal lobes in the early phase, progressing to hippocampal sclerosis/atrophy in the later phase on MRI. EEG commonly showed slow or spike waves on frontotemporal lobes with epileptic discharges. Prognostic factors varied among patients, with some experiencing persistent refractory seizures, type-1 diabetes mellitus (T1DM), persistent memory impairment, persistent disability requiring full assistance, and, in severe cases, death.ConclusionOur findings suggest that anti-GAD65 antibody-positive autoimmune encephalitis patients may concurrently present with other APS. Our unique case presented with multiple endocrine syndromes and represents the first reported occurrence in children. Early diagnosis and timely initiation of immunotherapy are crucial for improving clinical symptoms and reducing the likelihood of relapses or permanent disabilities. Therefore, emphasis should be placed on prompt diagnosis and appropriate treatment implementation to achieve better patient outcomes

    Biological N fixation but not mineral N fertilization enhances the accumulation of N in peanut soil in maize/peanut intercropping system

    Get PDF
    Legume/cereal intercropping has the potential to maximize the use of resources to raise yields due to enhanced nitrogen (N) fixation by legume root nodules, while high N fertilization may inhibit the nodulation of legume. However, whether legume/cereal intercropping can promote the accumulation of soil N storage with N fertilization and its underlying mechanism are less clear. Here, we evaluated the long-term (5 years) effects of maize/peanut intercropping and mineral N fertilization on peanut soil total N content and soil N cycling functional genes. The experiment includes two planting patterns (peanut maize intercropping and peanut monocropping) with three N fertilization rates (0, 150, and 300 kg N ha−1). Intercropping increased soil total N content (STN) by average 18.2%, and the positive effect of intercropping on STN decreased with N application rate. Highest N application decreased the nodule fresh weight (NFW) by 64.3% and 46.0% in intercropping and monocropping system, respectively. However, intercropping has no effect on NFW. Intercropping increased the nifH gene abundance by average 26.5%. SEM analysis indicated that NFW and nifH gene abundance combined can explain 46% of the variance of STN. Our results indicate that biological N fixation but not mineral N fertilization enhances the accumulation of N in soil planted with peanut in maize/peanut intercropping system.info:eu-repo/semantics/publishedVersio

    Effects of hydrodynamic cavitation on physicochemical structure and emulsifying properties of tilapia (Oreochromis niloticus) myofibrillar protein

    Get PDF
    The purpose of this research was to explore the different hydrodynamic cavitation (HC) times (0, 5, 10, 15, 20 min; power 550 W, pressure 0.14 MPa) on the emulsifying properties of tilapia myofibrillar protein (TMP). Results of pH, particle size, turbidity, solubility, surface hydrophobicity, and reactive sulfhydryl (SH) group indicated that HC changed the structure of TMP, as confirmed by the findings of intrinsic fluorescence and circular dichroism (CD) spectra. Furthermore, HC increased the emulsifying activity index (EAI) significantly (P < 0.05) and changed the emulsifying stability index (ESI), droplet size, and rheology of TMP emulsions. Notably, compared with control group, the 10-min HC significantly decreased particle size and turbidity but increased solubility (P < 0.05), resulting in accelerated diffusion of TMP in the emulsion. The prepared TMP emulsion showed the highest ESI (from 71.28 ± 5.50 to 91.73 ± 5.56 min), the smallest droplet size (from 2,754 ± 110 to 2,138 ± 182 nm) and the best rheological properties, as demonstrated by the microstructure photographs. Overall, by showing the effect of HC in improving the emulsifying properties of TMP, the study demonstrated HC as a potential technique for meat protein processing

    State Ownership and Banks Information Rents: Evidence from China

    No full text
    In a lending relationship, a bank with an information advantage regarding its client tends to hold up the borrower and charge higher interest rates. We conjecture that state-owned enterprises (SOEs), with worse information asymmetry, are subject to greater informationrents. State-owned banks place less emphasis on information production and hence extract lower rents compared to profit maximizing private banks. We use the decline of loan interest rates around the borrowers’ equity initial public offerings (IPOs) as the proxy of banks’ information rents. We find SOEs in China experiencelarger declines in loan interest rates around their IPOs; the central government-controlled Big Four banks exhibit smaller declines in rates they charge, and their rate declines concentrate on loans made to SOEs

    Efficient Dye-Sensitized Solar Cells Composed of Nanostructural ZnO Doped with Ti

    No full text
    Photoanode materials with optimized particle sizes, excellent surface area and dye loading capability are preferred in good-performance dye sensitized solar cells. Herein, we report on an efficient dye-sensitized mesoporous photoanode of Ti doped zinc oxide (Ti-ZnO) through a facile hydrothermal method. The crystallinity, morphology, surface area, optical and electrochemical properties of the Ti-ZnO were investigated using X-ray photoelectron spectroscopy, transmission electron microscopy and X-ray diffraction. It was observed that Ti-ZnO nanoparticles with a high surface area of 131.85 m2 g−1 and a controlled band gap, exhibited considerably increased light harvesting efficiency, dye loading capability, and achieved comparable solar cell performance at a typical nanocrystalline ZnO photoanode

    Numerical Study on Hydraulic Fracture Propagation in a Layered Continental Shale Reservoir

    No full text
    The distribution of beddings varies greatly in shale reservoirs. The influence of beddings on hydraulic fracture propagation has often been studied using simplified geological models, i.e., uniformly distributed bedding models. However, the propagation processes of hydraulic fractures in shale reservoirs with complicated distributed beddings remains unclear. In this research, an outcrop-data-based bedding model of a continental shale formation in the Ordos Basin, China, is built. A mathematical model for fracture propagation is built using the discrete element method and is then verified by a hydraulic fracturing experiment. Reservoir-scale simulations are employed to investigate the influence of geological factors and engineering factors on fracture geometry. The study finds that beddings have significant inhibitory effects on fracture height growth; hydraulic fractures have difficulty in breaking through zones with densely distributed beddings. If a hydraulic fracture encounters a bedding plane with a larger aperture, it is more likely to be captured and expand along the weak interface. High vertical stress difference and a high fluid injection rate can promote the vertical penetration of hydraulic fractures through beddings and activate the bedding system to yield a complex fracture network. Increments in fluid viscosity can increase the resistance of fracture propagation, thereby reducing fracture complexity

    Transcriptome Profiling to Identify Genes Involved in Non-Target-Site-Based Resistance to Clodinafop-Propargyl in Asia Minor Bluegrass (<i>Polypogon fugax</i>)

    No full text
    Asia Minor bluegrass (Polypogon fugax Nees ex Steud.) is a problematic grass weed of winter crops in China, where some populations have become resistant to herbicides. Previously, we identified a P. fugax population QS exhibiting target-site-based resistance (TSR) and non-target-site-based resistance (NTSR) to clodinafop-propargyl. This study aims to understand the metabolic resistance to clodinafop-propargyl between susceptible (XC) and resistant (QS) populations of P. fugax in the seedling and tillering stage, separately. Several differentially expressed candidate genes in the seedling and tillering stages were identified by RNA-Seq, including three P450 family genes, one glutathione S-transferase (GST) gene, and two ATP-binding cassette transporters. Additionally, we discovered a GST gene that was significantly differentially expressed in the resistant population during the seedling stage, as well as three peroxidase genes that were presumed to be related to NTSR metabolism. Three other peroxidase genes and one esterase were presumed to be related to NTSR metabolism during the tillering stage of the resistant population. Overexpression of the three randomly selected candidate genes can enhance herbicide-resistance in Arabidopsis transgenic plants. This study provided a novel insight into herbicide metabolism regulation genes during the different growth stages of resistant P. fugax population

    MiR-27 as a prognostic marker for breast cancer progression and patient survival.

    Get PDF
    BACKGROUND: MicroRNA-27a (miR-27a) is thought to be an onco-microRNA that promotes tumor growth and metastasis by downregulating ZBTB10. The potential predictive value of miR-27a was studied in breast cancer patients. METHODS: The expression of miR-27a and ZBTB10 was examined in 102 breast cancer cases using in situ hybridization (ISH) and immunohistochemistry techniques and were evaluated semi-quantitatively by examining the staining index. The Correlation of miR-27a and ZBTB10 expression was analyed by Spearman Rank Correlation. The association of miR-27a and ZBTB10 expression with clinicopathological characteristics was analyzed using the χ(2) test, and their effects on patient survival were analyzed by a log-rank test and the Kaplan-Meier method. Univariate and multivariate Cox regression analyses were used to evaluate the prognostic values of miR-27a and ZBTB10. RESULTS: miR-27a was markedly up-regulated in invasive breast cancers that expressed low levels of ZBTB10 (P<0.001). A reverse correlation between miR-27a and ZBTB10 was also observed in breast cancer tissue samples (r(s) = -0.478, P<0.001). Furthermore, the expression of miR-27a and ZBTB10 was significantly correlated with clinicopathological parameters, including tumor size, lymph node metastasis and distant metastasis (P<0.05), but not with receptor status. Patients with high miR-27a or low ZBTB10 expression tended to have significantly shorter disease-free survival times (57 months and 53 months, respectively, P <0.001) and overall survival times (58 months and 55 months, respectively, P <0.001). Univariate and multivariate analysis showed that both miR-27a and ZBTB10 were independent prognostic factors of disease-free survival in breast cancer patients (P <0.001), while only miR-27a was an independent predictor of overall survival (P <0.001). CONCLUSIONS: High miR-27a expression is associated with poor overall survival in patients with breast cancer, which suggests that miR-27a could be a valuable marker of breast cancer progression
    • …
    corecore