216 research outputs found
Construction of Trisubstituted Chromone Skeletons Carrying Electron-Withdrawing Groups Via PhIO-Mediated Dehydrogenation and Its Application to the Synthesis of Frutinone A
Abstract
The construction of the biologically interesting chromone skeleton was realized by PhIO-mediated dehydrogenation of chromanones under mild conditions. Interestingly, this method also found application in the synthesis of the naturally occurring frutinone A
Isolation and identification of antagonistic Bacillus amyloliquefaciens HSE-12 and its effects on peanut growth and rhizosphere microbial community
The HSE-12 strain isolated from peanut rhizosphere soil was identified as Bacillus amyloliquefaciens by observation of phenotypic characteristics, physiological and biochemical tests, 16S rDNA and gyrB gene sequencing. In vitro experiments showed that the strain possessed biocontrol activity against a variety of pathogens including Sclerotium rolfsii. The strain has the ability to produce hydrolytic enzymes, as well as volatile organic compounds with antagonistic and probiotic effects such as ethyleneglycol and 2,3-butanediol. In addition, HSE-12 showed potassium solubilizing (10.54 ± 0.19 mg/L), phosphorus solubilization (168.34 ± 8.06 mg/L) and nitrogen fixation (17.35 ± 2.34 mg/g) abilities, and was able to secrete siderophores [(Ar-A)/Ar × 100%: 56%] which promoted plant growth. After inoculating peanut with HSE-12, the available phosphorus content in rhizosphere soil increased by 27%, urease activity increased by 43%, catalase activity increased by 70% and sucrase activity increased by 50% (p < 0.05). The dry weight, fresh weight and the height of the first pair of lateral branches of peanuts increased by 24.7, 41.9, and 36.4%, respectively, compared with uninoculated peanuts. In addition, compared with the blank control, it increased the diversity and richness of peanut rhizosphere bacteria and changed the community structure of bacteria and fungi. The relative abundance of beneficial microorganisms such as Sphingomonas, Arthrobacter, RB41, and Micromonospora in rhizosphere soil was increased, while the relative abundance of pathogenic microorganisms such as Aspergillus, Neocosmospora, and Rhizoctonia was decreased
Moxibustion Activates Macrophage Autophagy and Protects Experimental Mice against Bacterial Infection
Moxibustion is one of main therapies in traditional Chinese medicine and uses heat stimulation on the body surface from the burning of moxa to release pain or treat diseases. Emerging studies have shown that moxibustion can generate therapeutic effects by activating a series of signaling pathways and neuroendocrine-immune activities. Here we show moxibustion promoted profound macrophage autophagy in experimental Kunming mice, with reduced Akt phosphorylation and activated eIF2α phosphorylation. Consequently, moxibustion promoted bacterial clearance by macrophages and protected mice from mortality due to bacterial infection. These results indicate that moxibustion generates a protective response by activating autophagy against bacterial infections
Assessing the impact of short-term ozone exposure on excess deaths from cardiovascular disease: a multi-pollutant model in Nanjing, China’s Yangtze River Delta
BackgroundOzone pollution is associated with cardiovascular disease mortality, and there is a high correlation between different pollutants. This study aimed to assess the association between ozone and cardiovascular disease deaths and the resulting disease burden in Nanjing, China.MethodsA total of 151,609 deaths from cardiovascular disease were included in Nanjing, China from 2013 to 2021. Daily data on meteorological and air pollution were collected to apply a generalized additional model with multiple pollutants to perform exposure-response analyses, stratification analysis, and evaluation of excess deaths using various standards.ResultsIn the multi-pollutant model, an increase of 10 μg/m3 in O3 was significantly associated with a 0.81% (95%CI: 0.49, 1.12%) increase in cardiovascular disease deaths in lag05. The correlation weakened in both the single-pollutant model and two-pollutant models, but remained more pronounced in females, the older group, and during warm seasons. From 2013 to 2021, the number of excess deaths attributed to ozone exposure in cardiovascular disease continued to rise with an increase in ozone concentration in Nanjing. If the ozone concentration were to be reduced to the WHO standard and the minimum level, the number of deaths would decrease by 1,736 and 10,882, respectively.ConclusionThe risk of death and excess deaths from cardiovascular disease due to ozone exposure increases with higher ozone concentration. Reducing ozone concentration to meet WHO standards or lower can provide greater cardiovascular disease health benefits
Gene Expression Profiles Deciphering Rice Phenotypic Variation between Nipponbare (Japonica) and 93-11 (Indica) during Oxidative Stress
Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L.) subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS). In this study, methyl viologen (MV) as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica) seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica). Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs). These CIPs were analyzed by gene ontology (GO) and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs), P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS). Further insertion/deletion (InDel) and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits
The synthesis, structure and electronic properties of a lead-free hybrid inorganic–organic double perovskite (MA)2KBiCl6(MA = methylammonium)
In a search for lead-free materials that could be used as alternatives to the hybrid perovskites, (MA)PbX3, in photovoltaic applications, we have discovered a hybrid double perovskite, (MA)2KBiCl6, which shows strong similarities to the lead analogues. Spectroscopic measurements and nanoindentation studies are combined with density functional calculations to reveal the properties of this interesting system
Insights into salt tolerance from the genome of Thellungiella salsuginea
Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments
- …