27 research outputs found

    Acute hydrogen sulfide–induced neuropathology and neurological sequelae: challenges for translational neuroprotective research

    No full text
    Hydrogen sulfide (H(2)S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H(2)S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H(2)S is known to cause brain damage, leading to neurodegeneration and long‐term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H(2)S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H(2)S concentrations. This review focuses on the neuropathology of high acute H(2)S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H(2)S‐induced neurodegeneration

    Simulating real-life exposures to uncover possible risks to human health: A proposed consensus for a novel methodological approach

    No full text
    In real life, consumers are exposed to complex mixtures of chemicals via food, water and commercial products consumption. Since risk assessment usually focuses on individual compounds, the current regulatory approach doesn't assess the overall risk of chemicals present in a mixture. This study will evaluate the cumulative toxicity of mixtures of different classes of pesticides and mixtures of different classes of pesticides together with food additives (FAs) and common consumer product chemicals using realistic doses after long-term exposure. Groups of Sprague Dawley (CD-SD) rats (20 males and 20 females) will be treated with mixtures of pesticides or mixtures of pesticides together with FAs and common consumer product chemicals in 0.0, 0.25 × acceptable daily intake (ADI)/tolerable daily intake (TDI), ADI/TDI and 5 × ADI/TDI doses for 104 weeks. All animals will be examined every day for signs of morbidity and mortality. Clinical chemistry hematological parameters, serum hormone levels, biomarkers of oxidative stress, cardiotoxicity, genotoxicity, urinalysis and echocardiographic tests will be assessed periodically at 6 month intervals. At 3-month intervals, ophthalmological examination, test for sensory reactivity to different types of stimuli, together with assessment of learning abilities and memory performance of the adult and ageing animals will be conducted. After 24 months, animals will be necropsied, and internal organs will be histopathologically examined. If the hypothesis of an increased risk or a new hazard not currently identified from cumulative exposure to multiple chemicals was observed, this will provide further information to public authorities and research communities supporting the need of replacing current single-compound risk assessment by a more robust cumulative risk assessment paradigm. © The Author(s) 2016
    corecore