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Abstract Warm inflation in the non-minimal derivative
coupling model with a general dissipative coefficient is con-
sidered. We investigate the conditions for the existence of
the slow roll approximation and study cosmological pertur-
bations. The spectral index and the power spectrum are cal-
culated and the temperature of the universe at the end of the
slow roll warm inflation is obtained.

1 Introduction

To describe the inflationary phase in the early universe [1–4],
many theories have been proposed which most of them are
categorized into two classes: modified gravity models [5–9],
and models with exotic fields dubbed inflaton [10–13]. These
groups may related to each other through some conformal
transformations [14–16].

In a well-known model, the responsible of the early accel-
erated expansion of the Universe is a canonical scalar field
ϕ, rolling down slowly a nearly flat potential. Inflation lasts
as long as the slow roll conditions hold. In this paradigm we
encounter a cold universe at the end of inflation. After the end
of the slow roll, the scalar field begins a rapid coherent oscil-
lation and decays to ultra-relativistic particles (radiation)
reheating the Universe [17–19]. A natural candidate for this
scalar field, as is proposed in [20], is the Higgs boson. In this
context, adding a non-minimal coupling between the scalar
field and scalar curvature is required for the renormalizability,
and also consistency with the amplitude of density perturba-
tions obtained via observations. Another model in which the
inflaton is considered as the Higgs field is introduced in [21],
where the scalar field has a non-minimal kinetic coupling
term. This theory does not suffer from unitary violation and is
safe of quantum corrections. In this framework, the inflation
and the reheating of the Universe are discussed in the litera-
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ture [22–25]. The same model, with a non-canonical scalar
field dark energy, is also employed to describe the present
acceleration of the Universe [26–32]. In the aforementioned
model, inflation and reheating happen in two distinct eras, but
one can unify them by assuming an appropriate dissipative
coefficient which permits the decay of inflaton to radiation
during inflation: Warm inflation was first introduced for min-
imal coupling model [33,34]. Afterwards, numerous articles
has been published in this subject [35–41]. A friction term for
inflaton equation of motion is computed in [39–41]. Tachy-
onic warm inflationary universe models are considered in
[42].

In this work we consider warm inflation in non-minimal
derivative coupling model. In the second and third sections,
based on our previous papers [22–25], we review the non-
minimal derivative coupling model in the presence of an addi-
tional radiation sector and investigate slow roll conditions. In
the fourth section, the perturbations in the model are studied,
and the discussion is conducted in such a way that the param-
eter extractable from the observations such as the spectral
index acquire more serviceable and more general compact
form with respect to [43,44], where the perturbations of this
model were also discussed. By employing the Planck 2013
data, we use our results to obtain the temperature at the end
of warm slow roll inflation.

We use units h̄ = c = 8πG = 1 throughout the paper.

2 Preliminaries

The action of gravitational enhanced friction (GEF) theory
is given by [21]

S =
∫ (

1

2
R− 1

2
�μν∂μϕ∂νϕ−V (ϕ)

)√−gd4x+Sint +Sr ,

(1)
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where �μν = gμν + 1
M2 G

μν , Gμν = Rμν − 1
2 Rg

μν is
Einstein tensor, M is a constant, Sr is the matter action and
Sint describes the interaction of the scalar field with all other
ingredients. In the absence of terms containing more than two
time derivatives, we have no additional degrees of freedom
in this theory. We calculate the energy momentum tensor,

Tμν = T (ϕ)
μν + T (r)

μν , (2)

by variation of the action with respect to the metric [45].
T (r)

μν is the radiation energy momentum tensor and T (ϕ)
μν is

the scalar field energy momentum tensor, consisting of parts
coming from the minimal part: Tμν ,

T (ϕ)
μν = ∇μϕ∇νϕ − 1

2
gμν(∇ϕ)2 − gμνV (ϕ), (3)

and parts coming from the non-minimal derivative coupling
section, �μν ,

�μν = −1

2
Gμν(∇ϕ)2 − 1

2
R∇μϕ∇νϕ + Rα

μ∇αϕ∇νϕ

+Rα
ν ∇αϕ∇μϕ + Rμανβ∇αϕ∇βϕ + ∇μ∇αϕ∇ν∇αϕ

−∇μ∇νϕ�ϕ − 1

2
gμν∇α∇βϕ∇α∇βϕ + 1

2
gμν(�ϕ)2

−gμν∇αϕ∇βϕRαβ. (4)

By variation of the action (1) with respect to the scalar
field ϕ, the equation of motion for the homogeneous and
isotopic scalar field in the presence of a dissipative term can
be expressed as
(

1 + 3H2

M2

)
ϕ̈ + 3H

(
1 + 3H2

M2 + 2Ḣ

M2

)
ϕ̇

+ V ′(ϕ) + 
ϕ̇ = 0, (5)

where H = ȧ
a is the Hubble parameter, a dot is differentiation

with respect to the cosmic time t , a prime is differentiation
with respect to the scalar field ϕ, and 
ϕ̇ is the friction term
adopted phenomenologically to describe the decay of the ϕ

field and its energy transfer into the radiation bath. 
 in gen-
eral is a function of ϕ and temperature [46,47]. The Friedman
equation for this model is given by

H2 = 1

3

((
1 + 9H2

M2

)
ϕ̇2

2
+ V (ϕ) + ρr

)
, (6)

where ρr is the energy density of the radiation, which can be
written as [46]

ρr = 3

4
T S. (7)

S is the entropy density and T is the temperature. The energy
density and pressure of homogeneous and isotropic scalar
field are given by

ρϕ =
((

1 + 9H2

M2

)
ϕ̇2

2
+ V (ϕ)

)
(8)

and

Pϕ =
(

1 − 3H2

M2 − 2Ḣ

M2

)
ϕ̇2

2
− V (ϕ) − 2H ϕ̇ϕ̈

M2 , (9)

respectively. By the continuity equation for the total system
ρ̇ + 3H(ρ + P) = 0, and also the equation of motion (5),
we obtain

ρ̇r + 4Hρr = 
φ̇2, (10)

which gives the rate of entropy production as

T (Ṡ + 3HS) = 
ϕ̇2. (11)

3 Slow roll approximation

In the previous section we pointed out to the equations needed
to describe the scalar field and radiation evolutions in an inter-
acting non-minimal coupling model. Hereafter we consider
the slow roll approximation:

ϕ̈ � 3H ϕ̇ Ḣ � H2
(

1 + 9H2

M2

)
ϕ̇2

2
� V (ϕ). (12)

The entropy density satisfies

T S � V (ϕ) Ṡ � 3HS. (13)

For a positive potential, the slow roll conditions give rise
to the inflation. Neglecting the second order derivative, we
can write the equation of motion of the scalar field as

ϕ̇ � − V ′(ϕ)

3HU (1 + r)
, (14)

where

U = 1 + 3H2

M2 r = 


3UH
. (15)

r is the ratio of thermal damping component to the expansion
damping. During the slow roll warm inflation, the potential
energy of the scalar field is dominant, and therefore the Fried-
man equation becomes

H2 � 1

3
V (ϕ). (16)

We have also

ST � Ur ϕ̇2. (17)

By Eq. (16) we can write U as a function of the potential,
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U = 1 + V (ϕ)

M2 . (18)

We employ the following set of parameters to characterize
the slow roll:

δ = 1

2

(
V ′(ϕ)

V (ϕ)

)2 1

U (ϕ)
, (19)

η = V ′′(ϕ)

V (ϕ)

1

U (ϕ)
, (20)

β = 
′(ϕ)V ′(ϕ)


(ϕ)V (ϕ)

1

U (ϕ)
, (21)

ε = − Ḣ

H2 . (22)

To express slow roll conditions in terms of these parameters,
we need to calculate U̇ and ṙ . We have

U̇ = 6Ḣ H

M2 , (23)

therefore

U̇

H
= −2ε(U − 1) (24)

and

ṙ

H
= −β

r

r + 1
+ εr

(
3 − 2

U

)
. (25)

Using Eq. (16), one can obtain ε as a function δ and r ,

ε = δ

1 + r
. (26)

From (14) we can derive

ϕ̈

H ϕ̇
= −η

1

r + 1
+ δ

(
3 + 2

U

)
1

(1 + r)2 + β
r

(1 + r)2 .

(27)

The slow roll conditions can be expressed as

ε � 1, δ � 1 + r, η � 1 + r, β � 1 + r. (28)

Note that if H2

M2 → 0 our model reduces to warm inflation in a

minimal coupling model [33,34], and if r → 0 and H2

M2 → 0
we recover the standard slow roll inflation [48,49]. By using
Eqs. (19)–(21), we get

1

H

d ln(T S)

dt
= ε

(
1 + 2

(3 − 2
U )

1 + r

)
+β

−1 + r

(1 + r)2 −2η
1

(1 + r)
.

(29)

In our study, we take r � 1 and consider the high friction
limit,

H2

M2 � 1, (30)

therefore U � 3H2

M2 � 1 and 1
H

d ln(T S)
dt = 1

H

(
Ṫ
T + Ṡ

S

)
� 1.

The number of e-folds during slow roll warm inflation is

N =
∫ tend

t�
Hdt=

∫ ϕend

ϕ�

H

ϕ̇
dϕ=−

∫ ϕend

ϕ�

3H2U (1 + r)

V ′(ϕ)
dϕ,

(31)

where ϕ� = ϕ(t�) and ϕend = ϕ(tend) are the values of the
scalar field at the horizon crossing (t�), and at the end of infla-
tion, (tend). By horizon crossing (or horizon exit) we mean
the time at which a pivot scale exited the Hubble radius dur-
ing inflation. Using the Friedman equation the above relation
becomes

N =
∫ ϕend

ϕ�

V (ϕ)

V ′(ϕ)
U (1 + r)dϕ. (32)

At the end of this section, by choosing the form of 
 and
the potential, we derive more specific results. We adopt the
(general) damping term proposed in [46]


 = 
0

(
ϕ

ϕ0

)p

, (33)

where p is an arbitrary real number and ϕ0, 
0 are constant,
and we consider the power law potential

V (ϕ) = λϕn, (34)

where n and λ are two constants. By using Eq. (18), and in
the high friction limit for r � 1, after some computations
we obtain

ρr = 
ϕ̇2

4H
. (35)

By inserting ϕ̇ from (14) into the above equation we obtain

ρr = V ′(ϕ)2

4H

=

√
3V ′(ϕ)2

4

√
V (ϕ)

. (36)

Using (33) and (34), ρr is obtained as

ρr =
√

3n2λ
3
2 ϕ

p
0

4
0
ϕ( 3n

2 −2−p). (37)
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We can write radiation energy density as a function of
temperature,

ρr = gπ2

30
T 4, (38)

where g is the number of degree of freedom for ultra-
relativistic particles. By Eqs. (37) and (38) the temperature
of the universe may derived as a function of ϕ,

T = Aϕ
3n−4−2p

8 , (39)

where in this relation A is given by

A =
(

15
√

3n2λ
3
2 ϕ

p
0

2
0gπ2

) 1
4

. (40)

The slow roll parameters may now be expressed as

δ = M2n2

2λ

1

ϕn+2 , (41)

η = M2n(n − 1)

λ

1

ϕn+2 , (42)

and the number of e-folds is given by

N = 1

3

∫ ϕ�

ϕend

V (ϕ)


V ′(ϕ)H
dϕ, (43)

where ϕ� = ϕ(t�) and t� is the time at the horizon crossing.
By using (39) and assuming ϕ� � ϕend, the number of e-
folds becomes

N = 4
0√
3n

√
λϕ

p
0

× ϕ
4p−2n+8

4
�

4p − 2n + 8
. (44)

The equation ä
a = H2(1 − ε) implies that the inflation

ends when ε ∼ 1 (∼ denotes the order of magnitude). Putting
ε ∼ 1 back into (26) gives δ ∼ 1 + r and if r � 1, at the
end of warm inflation we have δ ∼ r .

4 Cosmological perturbations

In this section we consider the evolution equation for the
first order cosmological perturbations of a system contain-
ing inflaton and radiation. In the Newtonian gauge, scalar
perturbations of the metric can be written as [50]

ds2 = −(1 + 2�)dt2 + a2(1 − 2�)δi jdx
idx j . (45)

The energy momentum tensor splits into radiation Tμν
r and

an inflaton part Tμν
ϕ ,

Tμν = Tμν
r + Tμν

ϕ . (46)

Tμν
ϕ is the energy momentum tensor of the inflaton, intro-

duced in the second section. We have modeled the radiation
field as a perfect barotropic fluid. We have

Tμν
r = (ρr + Pr )uμuν + Pr gμν, (47)

where ur is the four-velocity of the radiation fluid and ui = 0
and u0 = −1. A bar denotes unperturbed quantities. By
considering the normalization condition gμνuμuν = −1, we
obtain

δu0 = δu0 = h00

2
. (48)

δui is an independent dynamical variable. We can define
δui = ∂iδu [50]. Energy transfer between the two compo-
nents is described by a flux term [51],

Qμ = −
uν∂μϕ∂νϕ, (49)

associated to the field equations

∇μT
μν
r = Qν (50)

and

∇μT
μν
ϕ = −Qν . (51)

From Eq. (49) we deduce Q0 = 
ϕ̇2, so the unperturbed
equation (50) becomes Q0 = ρ̇r + 3H(ρr + Pr ), which
is the continuity equation for radiation field in the presence
of interaction. Similarly, Eq. (51) becomes −Q0 = ρ̇ϕ +
3H(ρϕ+Pϕ). Perturbations to the energy momentum transfer
are described by the energy transfer

δQ0 = −δ
ϕ̇2 + �
ϕ̇2 − 2
ϕ̇ ˙δϕ (52)

and the momentum flux

δQi = −
ϕ̇∂iδϕ. (53)

By variation of Eq. (50) as δ(∇μT
μν
r ) = δQν , for the zeroth

(0–0) component we obtain

˙δρr + 4Hδρr + 4

3
ρr∇2δu − 4�̇ρr = −�
ϕ̇2 + δ
ϕ̇2

+2
 ˙δϕϕ̇, (54)

and for the i th component we derive

123



Eur. Phys. J. C (2015) 75 :513 Page 5 of 9 513

4ρr
˙δui + 4ρ̇rδu

i + 20Hρrδu
i

= −a2[3
ϕ̇∂iδϕ + ∂iδρr + 4ρr∂i�]. (55)

The equation of motion for perturbation of the scalar field
can be calculated by variation of (51) as δ(∇μT

μν
ϕ ) = −δQν

giving

(
1 + 3H2

M2

)
¨δϕ +

[(
1 + 3H2

M2 + 2Ḣ

M2

)
3H + 


]
˙δϕ

+ δV ′(ϕ) + ϕ̇δ
 (56)

−
(

1 + 3H2

M2 + 2Ḣ

M2

) ∇2δϕ

a2

= −
[

2V ′(ϕ) + 3
ϕ̇ − 6H ϕ̇

M2 (3H2 + 2Ḣ) − 6H2ϕ̈

M2

]
�

+
(

1 + 9H2

M2

)
ϕ̇�̇ + 2H ϕ̇

M2

∇2�

a2

+3

(
1 + 9H2

M2 + 2Ḣ

M2 + 2H ϕ̈

M2

)
�̇

+6H ϕ̇

M2 �̈ − 2(ϕ̈ + H ϕ̇)

M2

∇2�

a2 , (57)

for the zeroth component. By using a perturbation to the
Einstein field equation Gμν = −Tμν (note that we have
taken 8πG = 1), one can obtain the evolution equation for
the perturbation parameters, which for the 0–0 component is

−3H�̇ − 3H2� + ∇2�

a2

= 1

2

[
−

(
1 + 18H2

M2

)
ϕ̇2� − 9H ϕ̇2

M2 �̇

+ ϕ̇2

M2

∇2�

a2 + ´V (ϕ)δϕ +
(

1 + 9H2

M2

)
ϕ̇ ˙δϕ

−2H ϕ̇

M2

∇2(δϕ)

a2 + δρr

]
, (58)

and the i–i components are

(3H2 + 2Ḣ)� + H(3�̇ + �̇) + ∇2(� − �)

3a2 + �̈

= 1

2

[(
(3H2 + 2Ḣ)

2ϕ̇2

M2 − ϕ̇2 + 8H ϕ̇ϕ̈

M2

)
� + 3H ϕ̇2

M2 �̇

+ ϕ̇2

M2
∇2�

3a2 +
(

3H ϕ̇2

M2 + 2ϕ̇ϕ̈

M2

)
�̇ + ϕ̇2

M2 �̈ + ϕ̇2

M2
∇2�

3a2

− ´V (ϕ)δϕ −
[(

− 1 + 3H2

M2 + 2Ḣ

M2

)
ϕ̇ + 2H ϕ̈

M2

]
˙δϕ

−2H ϕ̇

M2
¨δϕ + 2(ϕ̈ + H ϕ̇)

M2
∇2(δϕ)

3a2 + δPr

]
. (59)

By the relation −H∂i� − ∂i �̇ = 1
2 (ρ + P)∂iδu, from the

0–i component of the field equation we have

H� + �̇ = 1

2

[
3H ϕ̇2

M2 � + ϕ̇2

M2 �̇ +
(

1 + 3H2

M2

)
ϕ̇δϕ

−2H ϕ̇

M2
˙δϕ + (ρr + Pr )δu

]
. (60)

The six equations (54)–(60) generally describe the evolution
of perturbations.

We consider the quantities in momentum space via Fourier
transform; therefore the spatial parts of these quantities are
eikx where k is the wave number of the corresponding mode.
So by replacing ∂ j → ik j and ∇2 → −k2, and defining

δu = −a

k
veikx , (61)

we can write Eq. (55) as

ρr v̇ + ρ̇rv + 4Hρrv = k

a

[
ρr� + δρr

4
+ 3

4

ϕ̇δϕ

]
. (62)

During warm inflation the background and perturbation sat-
isfy the slow roll approximation. In other words the back-
ground and perturbations vary slowly in time (e.g. �̇ �
H�). We consider modes with wavenumbers satisfying k

a �
H . By applying these conditions to Eq. (54) and considering
the high friction regime, we obtain

δρr

ρr
= −� + δ




. (63)

Similarly, (62) reduces to

v = k

4aH

[
� + δρr

4ρr
+ 3
ϕ̇δϕ

4ρr

]
, (64)

and Eq. (56) takes the form
[(

1 + 3H2

M2

)
3H + 


]
˙δϕ + δV ′(ϕ) + ϕ̇δ


= −
[

2V ′(ϕ) + 3
ϕ̇ − 3H2

M2 (6H ϕ̇)

]
�. (65)

We derive also

H� = 1

2

[
3H ϕ̇2

M2 � +
(

1 + 3H2

M2

)
ϕ̇δϕ − 4a

3k
ρrv

]
. (66)

From Eqs. (63–66) we can calculate δϕ as a function of H ,

, and V (ϕ),

δϕ ≈ CV ′ exp (�(ϕ)), (67)

where �(ϕ) is defined as
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�(ϕ) ≡ −
∫ (


′




r

1 + r
+ V ′

V

2 + 5r

2(r + 1)2

×
[

1 + 3r

4
− βr

16(1 + r)

])
dϕ. (68)

The density perturbation is then [35,42,46]

δH = 16π

5

exp (−�(ϕ))

V ′ δϕ. (69)

In this relation δϕ is the fluctuation of the scalar field during
the warm inflation [33–35]

δϕ2 = kFT

2π2 , (70)

where kF is the freeze out scale. To calculate kF , we must
determine the time at which the damping rate of relation (56)
falls below the expansion rate H . At the freeze out time, tF ,
the freeze out wavenumber, kF = k

a(tF )
, is given by

kF =
√


H + 3H2

(
1 + 3H2

M2

)
=

√
3H2U (1 + r), (71)

therefore the density perturbation becomes

δ2
H =

(
128

25

) (
exp(−2�(ϕ))

V ′(ϕ)2

) √
3H2U (1 + r)T . (72)

The spectral index for the scalar perturbation is given by

ns − 1 = d ln δ2
H

d ln k
, (73)

where this derivative is computed at the horizon crossing
k ≈ aH . Finally we obtain

ns − 1 = 2η

(1 + r)
− δ

2(1 + r)
− β(1 + 5r)

2(1 + r)2

−δ(2 + 5r)(4 + 3r)

2(1 + r)2 + δβr(2 + 5r)

8(1 + r)4 . (74)

Using (33) and (34), one can see that the slow roll param-
eters are

δ ∼ n2

2
α, η ∼ n(n − 1)α, β ∼ pnα, (75)

where

α = M2

λ
ϕ−(n+2). (76)

For r � 1, we have

δ2
H =

(
128

25 × 3
1
4

)(
V 4


5
2

V ′2

)
T . (77)

With our power law choices for the potential and dissipation
coefficient, (77) reduces to

δ2
H =

(
128λ2

25 × 3
1
4 n2

)(

0

ϕ
p
0

) 5
2

ϕ(2n+2+ 5p
2 )T . (78)

The spectral index is

ns − 1 = 2η

r
− 8δ

r
− 5β

2r
. (79)

We can rewrite this relation as

ns − 1 = −nα

r

(
2n + 2 + 5p

2

)
, (80)

where r is given by

r = 
0M2

√
3ϕ

p
0 λ

3
2

ϕ(p− 3n
2 ). (81)

By inserting the value of ϕ at the horizon crossing in (80)
we get

ns − 1 = −n
√

3λϕ
p
0


0

(
2n + 2 + 5p

2

)
ϕ−(p+2− n

2 ). (82)

5 Evolution of the universe and temperature
of the warm inflation

In this section, using our previous results, we intend to cal-
culate the temperature of warm inflation as a function of
observational parameters via the method introduced in [52].
By the temperature of warm inflation, we mean the temper-
ature of the universe at the end of warm inflation. For this
purpose, we divide the evolution of the universe into three
parts as follows:

(I) from t� (horizon exit) until the end of slow roll warm
inflation, denoted by te. In this era, the potential of the
scalar field is the dominant term in the energy density.

(II) from te until recombination era, denoted by trec.
(III) from trec until the present time t0.

Therefore the number of e-folds from horizon crossing until
now becomes

N = ln

(
a0

a�

)
= ln

(
a0

arec

)
+ ln

(
arec

ae

)
+ ln

(
ae
a�

)

= NI + NII + NIII. (83)
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5.1 Slow roll

During the slow roll warm inflation, the scalar field rolls
down to the minimum of the potential and ultra-relativistic
particles are generated. In this period the positive potential
energy of the scalar field is dominant and therefore expansion
of the universe is accelerated. By Eqs. (44) and (82), for high
damping term r � 1, the number of e-folds during warm
inflation becomes

NI = 2n + 2 + 5p
2

(p + 2 − n
2 )(1 − ns)

. (84)

We need to calculate the scalar field and the temperature at
the end of slow roll. Inflation ends at the time when r(ϕend) ∼
δ(ϕend). From Eqs. (75) and (81), we can calculate the scalar
field at the end of inflation as

ϕ
−(p+2− n

2 )

end � 2
0

n2
√

3λϕ
p
0

. (85)

At the end of inflation the radiation energy density
becomes of the same order as the energy density of the scalar
field,

ρend � V (ϕend) = λ
(n2

√
3λϕ

p
0

2
0

) n
p+2− n

2
. (86)

From Eq. (38) we deduce that the temperature of the universe
at the end of inflation is

Tend �
(

30λ

gπ2

) 1
4
(

2
0

n2
√

3λϕ
p
0

) −n
4(p+2− n

2 )

. (87)

5.2 Radiation dominated and recombination eras

At the end of the warm inflation, the universe enters a radi-
ation dominated epoch. During this era the universe is filled
of ultra-relativistic particles which are in thermal equilib-
rium, and experiences an adiabatic expansion during which
the entropy per comoving volume is conserved: dS = 0 [53].
In this era the entropy density, s = Sa−3, is derived as [53]

s = 2π2

45
gT 3, (88)

So we have

arec

aend
= Tend

Trec

(
gend

grec

) 1
3

. (89)

In the recombination era, grec is related to photons degrees
of freedom and as a consequence grec = 2. Hence

NII = ln

(
Tend

Trec

(gend

2

) 1
3
)

. (90)

By the expansion of the universe, the temperature dimin-
ishes: T (z) = T (z = 0)(1 + z), where z is the redshift
parameter. So we can describe Trec in terms of TCMB as

Trec = (1 + zrec)TCMB. (91)

We have also

a0

arec
= (1 + zrec), (92)

hence

NII + NIII = ln

(
Tend

TCMB

(gend

2

) 1
3
)

. (93)

5.3 Temperature in the warm inflation

We have determined the number of e-folds appearing in the
right hand side of (83). To determine the warm inflation tem-
perature we are required to determineN in (83). By assuming
a0 = 1, the number of e-folds from the horizon crossing until
the present time is obtained as N = ln(�), where

� = 1

a∗
= H∗

k0
= V (ϕ�)

1
2√

3k0
. (94)

By Eqs. (83), (84), and (93) we can obtain Tend,

Tend = TCMB

(
2

gend

) 1
3

exp

(
N − (2n + 2 + 5p

2 )

(p + 2 − n
2 )(1 − ns)

)
,

(95)

which by using Eq. (94) can be expressed as

Tend = TCMB

(
2

gend

) 1
3 λ

1
2 ϕ

n
2
�√

3k0
exp

(
− (2n + 2+ 5p

2 )

(p+ 2− n
2 )(1 − ns)

)
.

(96)

With the help of the relations Ps(k0) = 25
4 δ2

H (k0) (k0 is
the pivot scale) and (78) we express the power spectrum as

Ps(k0) ≈
(

32

3
1
4 n2

)(

0

ϕ
p
0

) 5
2

λ2ϕ
(2n+2+ 5p

2 )
� T�. (97)

In the above equation T� is the temperature of the universe
at the horizon crossing where Eq. (39) holds, thus

Ps(k0) ≈ 32λ
19
8

n
3
2

⎛
⎝

(

0

ϕ
p
0

)9

× 15

2
√

3gendπ2

⎞
⎠

1
4

ϕ
(

19n+12+18p
8 )

� .

(98)
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From (82) and (98) we have

ϕ∗ =

⎛
⎜⎜⎜⎝

Ps(k0)

�(1 − ns)
19
4

(

0
ϕ
p
0

)7

⎞
⎟⎟⎟⎠

1
7p+1

, (99)

where

� = 29.5 × 3−2.25 × 50.25

n
25
4 (4n + 5p + 4)

19
4 (π2gend)

1
4

. (100)

In addition from (82) and (98) and (99)

√
λ =

Ps(k0)
p− n

2 +2
7p+1

(

0
ϕ
p
0

) 7n−26
2(1+7p)

(1 − ns)
18p+19n−68

8(7p+1)

√
3n�

p+2− n
2

7p+1 (2n + 5p
2 + 2)

. (101)

By inserting (99) and (101) in (96), we derive

Tend = B
TCMB

k0
(1 − ns)

9p−34
28p+4 Ps(k0)

p+2
7p+1

(

0

ϕ
p
0

) −13
7p+1

× exp

(
− 2n + 5p

2 + 2

(p − n
2 )(1 − ns)

)
, (102)

where B is defined by

B = 2
1
3 �

− p+2
7p+1

3ng
1
3
end(2n + 5p

2 + 2)

. (103)

We use (87) and (101) to obtain a second equation for the
temperature in terms of dissipation factor as

Tend = C(1 − ns)
− (p+2)(18p+19n−68)

8(7p+1)(−2p+n−4)

×Ps(k0)
2+p

2(7p+1)

(

0

ϕ
p
0

)− 13
2(7p+1)

, (104)

where C is defined by

C =
(

30

π2gend

) 1
4
(

2√
3n2

)− n
4(p− n

2 +2)

×�
− p+2

2(7p+1)

(√
3n

(
2n + 5p

2
+ 2

))− p+2
2p−n+4

. (105)

By combining (104) and (102), we can determine the tem-
perature in terms p, n, and the spectral index

Tend = K
k0

TCMB
(1 − ns)

n
2p+4−n

× exp

(
2n + 5p

2 + 2

(p − n
2 + 2)(1 − ns)

)
MP , (106)

where

K =
√

90(4n + 5p + 4)

2− 2(p+n+2)
3(n−2p−4) πg

1
6
endn

n
−2p+n−4

(
2n + 5p

2 + 2
) 2(p+2)

2p−n+4

.

(107)

MP = 2.4 × 1018 GeV = 8πG is the reduced Planck
mass. Hereafter we reset the natural units. Equation (106)
is completely different from the result obtained for tempera-
ture in reheating era in the ordinary (cold) minimal inflation
obtained in [52] for a quadratic potential,

Tend = 0.085

√
(1 − ns)

Ps

(
k0

TCMB

)3

exp

(
6

1 − ns

)
MP .

(108)

Up to a first order Taylor expansion, the relative uncer-
tainty in our result is

σ(Tend)

Tend
=

√
σ 2(ns)

T 2
end

(
∂T

∂ns

)2

. (109)

The two conditions that we have used for calculation of the
temperature, i.e. r � 1 and H2

M2 � 1, lead to

(2n + 5p
2 + 2)3

3n�
−2p−6
7p+1

Ps(k0)
− 2p−6

7p+1 (1 − ns)
51−23p
2(7p+1)

×
(


0

ϕ
p
0

) 40
7p+1

M2 � M
42−26p

7p+1
P (110)

and

gendπ
2

90
T 4

end � M2M2
P , (111)

respectively. Equation (110) was derived from (81) and (111)
was obtained using 1

3M2
P
ρr � M2.

To calculate Tend, we set gend = 106.75, which is the ultra-
relativistic degree of freedom at the electroweak energy scale.
From Planck 2013 for the pivot scale k0 = 0.05 Mpc−1 in one
sigma level, we setPs(k0) = (2.20±0.056)×10−9 and ns =
0.9608 ± 0.0054 [54–57]. Note that k0

TCMB
= 0.05Mpc−1

2.725K =
0.05×10−26. After fixing these parameters, the temperature
depends entirely on p and n. As an example if one takes
p = −1 [(this choice gives a positive power for 
0 in (102)]
and n = 0.8 (for non-integer values of n see [58,59]), one
obtains

5.01 × 107 GeV < Tend < 2.11 × 1013 GeV. (112)
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For ns = 0.9608, the temperature is Tend = 1.32×1010 GeV,
whose relative uncertainty is σ(Tend)

Tend
= 6.35.

The range of the temperature must lie below the upper
bound scale assumed in the literature, which is about the
GUT scale Tmax � 1016 GeV. By considering the big bang
nucleosynthesis (BBN), and on the base of the data derived
from large scale structure and also cosmic microwave back-
ground (CMB), a lower bound, Tmin � 4 MeV, is obtained
in [60], which is consistent with our example.

6 Summary

We considered warm inflation in the framework of non-
minimal derivative coupling model in high friction regime.
After an introduction to the model, we studied the slow roll
conditions and e-folds number and then specified them in
terms of the parameters of the model for a power law poten-
tial and a general power law dissipation factor. By study-
ing the cosmological perturbations, we obtained the power
spectrum and the spectral index. We used these quantities to
determine the temperature of the universe in terms of TCMB

and the spectral index.
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