522 research outputs found

    Characterization of marine shale in Western Hubei Province based on unmanned aerial vehicle oblique photographic data

    Get PDF
    The marine shale in the Sinian Doushantuo Formation of Qinglinkou outcrop section is well developed, but the current characterization methods for outcrops are unsatisfactory. In this paper, the data of outcrop in the field study area were collected by Unmanned Aerial Vehicle, then processed and interpreted by oblique photography technology combined with manual investigation. Subsequently, we established a quantitative geological knowledge database of the shale formations and carried out the typical section of anatomy analysis. The results showed that the high-precision image information captured by unmanned aerial vehicle oblique photography technology can be well coupled with a three-dimensional coordinate system. The three-dimensional digital model was used to characterize the lithologic assemblage, thickness and distribution characteristics of the target reservoir. Based on this digital model, we established the three-dimensional lithology and the total organic carbon models of the outcrop area. The spatial distribution characteristics of interbedding between marine dolomite and shale in the outcrop area were displayed, and the distribution of total organic carbon was revealed under lithological constraints. The models are beneficial for the analysis and prediction of the lithology and total organic carbon, which is of great significance to the understanding of shale gas sweet spots.Cited as: Yin, S., Feng, K., Nie, X., Chen, Q., Liu, Y., Wang, P. Characterization of marine shale in Western Hubei Province based on unmanned aerial vehicle oblique photographic data. Advances in Geo-Energy Research, 2022, 6(3): 252-263. https://doi.org/10.46690/ager.2022.03.0

    Effects of sea-buckthorn leaves on performance and serum metabolic profiles in Altay lambs

    Get PDF
    In this study, the effects of sea-buckthorn (Hippophae rhamnoides L.) leaves (SL) on the biochemical parameters and metabolomic profiling in Altay lamb (Ovis aries) were observed. Sixty six-month-old male Altay lambs (body weight 28.0 ± 3.5 kg) were randomly assigned to four groups (n=15). The experimental groups were named as CON, 2.5%, 5.0% and 7.5%. The group CON, contained animals fed with a basal diet. Animals of the other groups were fed a treatment diet consisting of 2.5% (Group 2.5%), 5.0% (Group 5.0%) and 7.5% (Group 7.5%) SL. The experimental period lasted 56 days. The results showed that the average daily gain (ADG) and average daily feed intake (ADFI) increased with the increase in the levels of dietary SL. Dietary SL showed a direct relationship with total protein (TP), albumin, globulin and total cholesterol (TC) content of the experimental animals. However, an indirect relationship was observed between dietary SL and the concentration of urea nitrogen (UN). The concentrations of glucose, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) showed quadratic change. Additional changes occurred in the endogenous metabolites involving multiple pathways. The pathways were tricarboxylic acid (TCA) cycle, the metabolism of protein and amino acid and the metabolism of fatty acid and steroid. The changes in metabolites primarily revealed an increase in amino acids and carbohydrates and a decrease in lipid metabolites. These findings provide a comprehensive insight into the effects of the metabolic aspects of sea-buckthorn leaves on Altay lambs. In addition, the present research results provide a better understanding to the development and utilization of sea-buckthorn as a healthy additive for small ruminant production.Keywords: Hippophae rhamnoides L., lamb, metabolomics, growth performance, serum parameter

    Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer

    Get PDF
    BACKGROUND: Accumulating evidence indicates that the long non-coding RNA HOTAIR plays a critical role in cancer progression and metastasis. However, the overall biological role and clinical significance of HOTAIR in gastric carcinogenesis remains largely unknown. METHODS: HOTAIR expression was measured in 78 paired cancerous and noncancerous tissue samples by real-time PCR. The effects of HOTAIR on gastric cancer cells were studied by overexpression and RNA interference approaches in vitro and in vivo. Insights of the mechanism of competitive endogenous RNAs (ceRNAs) were gained from bioinformatic analysis, luciferase assays and RNA binding protein immunoprecipitation (RIP). The positive HOTAIR/HER2 interaction was identified and verified by immunohistochemistry assay and bivariate correlation analysis. RESULTS: HOTAIR upregulation was associated with larger tumor size, advanced pathological stage and extensive metastasis, and also correlated with shorter overall survival of gastric cancer patients. Furthermore, HOTAIR overexpression promoted the proliferation, migration and invasion of gastric carcinoma cells, while HOTAIR depletion inhibited both cell invasion and cell viability, and induced growth arrest in vitro and in vivo. In particular, HOTAIR may act as a ceRNA, effectively becoming a sink for miR-331-3p, thereby modulating the derepression of HER2 and imposing an additional level of post-transcriptional regulation. Finally, the positive HOTAIR/HER2 correlation was significantly associated with advanced gastric cancers. CONCLUSIONS: HOTAIR overexpression represents a biomarker of poor prognosis in gastric cancer, and may confer malignant phenotype to tumor cells. The ceRNA regulatory network involving HOTAIR and the positive interaction between HOTAIR and HER2 may contribute to a better understanding of gastric cancer pathogenesis and facilitate the development of lncRNA-directed diagnostics and therapeutics against this disease

    Structural and mechanistic insights into the biosynthesis of CDP-archaeol in membranes

    Get PDF
    The divergence of archaea, bacteria and eukaryotes was a fundamental step in evolution. One marker of this event is a major difference in membrane lipid chemistry between these kingdoms. Whereas the membranes of bacteria and eukaryotes primarily consist of straight fatty acids ester-bonded to glycerol-3-phosphate, archaeal phospholipids consist of isoprenoid chains ether-bonded to glycerol-1-phosphate. Notably, the mechanisms underlying the biosynthesis of these lipids remain elusive. Here, we report the structure of the CDP-archaeol synthase (CarS) of Aeropyrum pernix (ApCarS) in the CTP- and Mg(2+)-bound state at a resolution of 2.4 Å. The enzyme comprises a transmembrane domain with five helices and cytoplasmic loops that together form a large charged cavity providing a binding site for CTP. Identification of the binding location of CTP and Mg(2+) enabled modeling of the specific lipophilic substrate-binding site, which was supported by site-directed mutagenesis, substrate-binding affinity analyses, and enzyme assays. We propose that archaeol binds within two hydrophobic membrane-embedded grooves formed by the flexible transmembrane helix 5 (TM5), together with TM1 and TM4. Collectively, structural comparisons and analyses, combined with functional studies, not only elucidated the mechanism governing the biosynthesis of phospholipids with ether-bonded isoprenoid chains by CTP transferase, but also provided insights into the evolution of this enzyme superfamily from archaea to bacteria and eukaryotes.Cell Research advance online publication 29 September 2017; doi:10.1038/cr.2017.122

    Clarifying confusions over carbon conclusions: antecedent soil carbon drives gains realised following intervention

    Get PDF
    Carbon removals associated with incremental gains in soil organic carbon (SOC) at scale have enormous potential to mitigate global warming, yet confusion over contexts that elicit SOC accrual abound. Here, we examine how bespoke interventions (through irrigation, fertiliser, crop type and rotations), antecedent SOC levels and soil type impact on long-term SOC accrual and greenhouse gas (GHG) emissions. Using a whole farm systems modelling approach informed using participatory research, we discovered an inverse relationship between antecedent SOC stocks and SOC gains realised following intervention, with greater initial SOC levels resulting in lower ex poste change in SOC. We found that SOC accrual was greatest for clays and least for sands, although changes in SOC in sandy loam soils were also low. Diversified whole farm adaptations – implemented through inclusion of grain legumes within wheat/canola crop rotations – were more conducive to improvement in SOC stocks, followed by Intensified systems (implemented through greater rates of irrigation, farm areas under irrigation, nitrogen fertiliser and inclusion of rice and maize in crop rotations). Adaptations that Simplified farm systems by reducing irrigation and fertiliser use resulted in the lowest SOC accrual. In most cases, long-term SOC stocks fell when SOC at the outset was greater than 4–5%, regardless of intervention made, soil or crop type, crop rotation, production system or climate. We contend that (1) management interventions primarily impacted SOC in the soil surface (0–30 cm) and had de minimus impact on deep SOC stocks (30–100 cm), (2) crop rotations including wheat, canola and faba beans were more conducive to improvement in SOC stocks, (3) scenarios with high status quo SOC had little impact on crop productivity, and not necessarily the lowest GHG emissions intensity, (4) productivity and GHG emissions intensity were largely a function of the quantum of nitrogenous fertiliser added, rather than SOC stocks, and (5) aspirations for improving SOC are likely to be futile if antecedent SOC stocks are already high (4–5 %). We conclude that potential for improving SOC stocks exists in contexts where antecedent stocks are low (<1%), which may include regions with land degradation, chronic erosion and/ or other constraints to vegetative ground cover that could be sustainably and consistently alleviated

    Sustainable intensification with irrigation raises farm profit despite climate emergency

    Get PDF
    Societal Impact Statement Despite comprising a small proportion of global agricultural land use, irrigated agriculture is enormously important to the global agricultural economy. Burgeoning food demand driven by population growth—together with reduced food supply caused by the climate crisis—is polarising the existing tension between water used for agricultural production versus that required for environmental conservation. We show that sustainable intensification via more diverse crop rotations, more efficient water application infrastructure and greater farm area under irrigation is conducive to greater farm business profitability under future climates. Summary &bull; Research aimed at improving crop productivity often does not account for the complexity of real farms underpinned by land-use changes in space and time. &bull; Here, we demonstrate how a new framework—WaterCan Profit—can be used to elicit such complexity using an irrigated case study farm with four whole-farm adaptation scenarios (Baseline, Diversified, Intensified and Simplified) with four types of irrigated infrastructure (Gravity, Pipe & Riser, Pivot and Drip). &bull; Without adaptation, the climate crisis detrimentally impacted on farm profitability due to the combination of increased evaporative demand and increased drought frequency. Whole-farm intensification—via greater irrigated land use, incorporation of rice, cotton and maize and increased nitrogen fertiliser application—was the only adaptation capable of raising farm productivity under future climates. Diversification through incorporation of grain legumes into crop rotations significantly improved profitability under historical climates; however, profitability of this adaptation declined under future climates. Simplified systems reduced economic risk but also had lower long-term economic returns. &bull; We conclude with four key insights: (1) When assessing whole-farm profit, metrics matter: Diversified systems generally had higher profitability than Intensified systems per unit water, but not per unit land area; (2) gravity-based irrigation infrastructure required the most water, followed by sprinkler systems, whereas Drip irrigation used the least water; (3) whole-farm agronomic adaptation through management and crop genotype had greater impact on productivity compared with changes in irrigation infrastructure; and (4) only whole-farm intensification was able to raise profitability under future climates

    Thin Film Growth and Device Fabrication of Iron-Based Superconductors

    Full text link
    Iron-based superconductors have received much attention as a new family of high-temperature superconductors owing to their unique properties and distinct differences from cuprates and conventional superconductors. This paper reviews progress in thin film research on iron-based superconductors since their discovery for each of five material systems with an emphasis on growth, physical properties, device fabrication, and relevant bulk material properties.Comment: To appear in J. Phys. Soc. Jp
    corecore