2,307 research outputs found

    Protein Phosphatase 2C of Toxoplasma Gondii Interacts with Human SSRP1 and Negatively Regulates Cell Apoptosis

    Get PDF
    International audienceBiographical notes of the first authors: GAO Xue Juan, female, born in 1980, PhD, assistant researcher, majoring in protein-protein interaction and signaling pathways; FENG Jun Xia, female, born in 1989, majoring in pathogenic molecular mechanism of pathogenic microorganisms. Abstract Objective The protozoan Toxoplasma gondii expresses large amounts of a 37 kDa Type 2C serine-threonine phosphatase, the so-called TgPP2C which has been suggested to contribute to parasite growth regulation. Ectopic expression in mammalian cells also indicated that the enzyme could regulate growth and survival. In this study, we aimed to investigate the interaction of TgPP2C with human SSRP1 (structure-specific recognition protein 1) and the effects of TgPP2C on cell viability. Methods The yeast two hybrid system, His-tag pull-down and co-immunoprecipitation assays were used to confirm the interaction of TgPP2C with SSRP1 and determine the binding domain on SSRP1. The evaluation of cell apoptosis was performed using cleaved caspase-3 antibody and Annexin-V/PI kit combined with flow cytometry. Results We identified human SSRP1 as an interacting partner of TgPP2C. The C-terminal region of SSRP1 including the amino acids 471 to 538 was specifically mapped as the region responsible for interaction with TgPP2C. The overexpression of TgPP2C down-regulated cell apoptosis and negatively regulated apoptosis induced by DRB, casein kinase II (CKII) inhibitor, through enhanced interaction with SSRP1. Conclusion TgPP2C may be a parasitic factor capable of promoting cell survival through interaction with the host protein SSRP1, thereby creating a favorable environment for parasite growth

    Educational anomaly analytics : features, methods, and challenges

    Get PDF
    Anomalies in education affect the personal careers of students and universities' retention rates. Understanding the laws behind educational anomalies promotes the development of individual students and improves the overall quality of education. However, the inaccessibility of educational data hinders the development of the field. Previous research in this field used questionnaires, which are time- and cost-consuming and hardly applicable to large-scale student cohorts. With the popularity of educational management systems and the rise of online education during the prevalence of COVID-19, a large amount of educational data is available online and offline, providing an unprecedented opportunity to explore educational anomalies from a data-driven perspective. As an emerging field, educational anomaly analytics rapidly attracts scholars from a variety of fields, including education, psychology, sociology, and computer science. This paper intends to provide a comprehensive review of data-driven analytics of educational anomalies from a methodological standpoint. We focus on the following five types of research that received the most attention: course failure prediction, dropout prediction, mental health problems detection, prediction of difficulty in graduation, and prediction of difficulty in employment. Then, we discuss the challenges of current related research. This study aims to provide references for educational policymaking while promoting the development of educational anomaly analytics as a growing field. Copyright © 2022 Guo, Bai, Tian, Firmin and Xia

    A new species of cosmocerca (Nematoda, ascaridomorpha) from the marine toad rhinella marina (linnaeus) (anura, bufonidae) in Australia

    Get PDF
    The marine toad Rhinella marina (Linnaeus) (Anura, Bufonidae) is a notorious, exotic amphibian species in Australia. However, our present knowledge of the composition of the nematode fauna of R. marina is still not complete. In the present study, a new cosmocercid nematode, Cosmocerca multipapillata sp. nov., was described using both light and scanning electron microscopy, based on specimens collected from R. marina in Australia. Cosmocerca multipapillata sp. nov. can be easily distinguished from its congeners by the body size, the presence of lateral alae and well sclerotized gubernaculum, the number and arrangement of plectanes and rosettes and the length of spicules, oesophagus and tail

    Native species Maxvachonia chabaudi Mawson, 1972 (Nematoda: Cosmocercoidea) found in the invasive marine toad Rhinella marina (Linnaeus) (Anura: Bufonidae) in Australia

    Get PDF
    The genus Maxvachonia Chabaud et Brygoo, 1960 (Ascaridomorpha: Cosmocercidae) is a poorly known group of parasitic nematodes. Species of Maxvachonia are native to Madagascar-Australo-Papuan Region, where they are known to parasitise frogs, snakes and skinks. Unfortunately, most of Maxvachonia species have been inadequately described. In the present study, we report the native species Maxvachonia chabaudi Mawson, 1972 from the intestine of the invasive marine toad Rhinella marina (Linnaeus) in Australia for the first time. We speculate that the marine toads infected with M. chabaudi are likely related to their eating skinks or the similarity in diet/habitat/ecology between the toad and the skinks. The detailed morphology of M. chabaudi was studied using light microscopy and, for the first time, scanning electron microscopy, based on the newly collected specimens. Some characters important for the specific diagnosis of M. chabaudi are reported for the first time, including each lip with distinct inner flanges, the location of vulva varying from anterior to posterior of the oesophageal bulb and the presence of single medio-ventral precloacal papilla. An identification key to the species of Maxvachonia is provided

    Editorial: Genomics-Enabled Triticeae Improvement

    Get PDF

    How tyramine β-hydroxylase controls the production of octopamine, modulating the mobility of beetles

    Get PDF
    Biogenic amines perform many kinds of important physiological functions in the central nervous system (CNS) of insects, acting as neuromodulators, neurotransmitters, and neurohormones. The five most abundant types of biogenic amines in invertebrates are dopamine, histamine, serotonin, tyramine, and octopamine (OA). However, in beetles, an important group of model and pest insects, the role of tyramine beta-hydroxylase (T beta H) in the OA biosynthesis pathway and the regulation of behavior remains unknown so far. We therefore investigated the molecular characterization and spatiotemporal expression profiles of T beta H in red flour beetles (Triboliun castaneum). Most importantly, we detected the production of OA and measured the crawling speed of beetles after dsTcT beta H injection. We concluded that TcT beta H controls the biosynthesis amount of OA in the CNS, and this in turn modulates the mobility of the beetles. Our new results provided basic information about the key genes in the OA biosynthesis pathway of the beetles, and expanded our knowledge on the physiological functions of OA in insects
    corecore