743 research outputs found

    Ejercicios Espirituales: itinerario de crecimiento

    Get PDF
    Sin lugar a dudas, resulta difícil el tratar de abordar en un artículo una introducción a los Ejercicios Espirituales de San Ignacio, entre muchas razones, porque se tiene como punto de partida la limitante de que su significación plena se entenderá únicamente al final de los Ejercicios. Los Ejercicios son un camino, una metodología, una guía, una escuela, en una palabra, son un itinerario de crecimiento, que lleva al encuentro de uno mismo, de la historia y de la Palabra. Hacerlos, implica empezar un itinerario de camino en la búsqueda de la voluntad de Dios y la libertad interior en pro del seguimiento de Jesús y de la pasión por el Reino. El presente artículo pretende ser una breve introducción a los Ejercicios Espirituales de San Ignacio, al aportar algunas claves vitales, teniendo como telón de fondo, la primera premisa que se señalaba con anterioridad. En una primera parte se abordan los Ejercicios Espirituales como un medio para disponerse al encuentro con Dios, donde la oración, la cooperación humana, la mediación del que da los Ejercicios y la misma puesta en marcha de los mismos llevan a reconocer elementos instrumentales para dicho encuentro (1.1); lo cual conducirá a reconocer en los Ejercicios la búsqueda de la voluntad de Dios (1.2), con el objetivo de ordenar la vida, concretada en la elección (1.3). En un segundo apartado se asoma al texto de los Ejercicios como fiel acompañante de la experiencia, de la perspectiva del origen de los primeros textos (2.1) y sobre todo, de las funciones que los mismos ejercen (2.2); para finalizar en un tercer apartado conclusivo, con los planos metodológicos de los Ejercicios, en cuanto método de elección (3)

    Condiciones Laborales y de Salud de Los Trabajadores de la Maquila del Tabaco. Ciudad El Paraíso, Honduras. Octubre 2003 a Marzo 2004.

    Get PDF
    El propósito es describir las características socio demográficas, las condiciones de trabajo y situación de salud de los trabajadores para aportar información y conocer la magnitud y trascendencia de esta problemática y tomar decisiones necesarias de prevención

    بررسی حیطه‌های موجود در فرم‌های ارزشیابی از دیدگاه دانشجویان در دانشگاه علوم پزشکی زنجان در سال تحصیلی 86- 87

    Get PDF
    زمینه و هدف: ارزشیابی استادان متداول‌ترین روش جهت سنجش کیفیت آموزش می‌باشد. دانشجویان بیش از دست‌اندرکاران در جریان روند آموزش قرار‌دارند بنابراین با نظرخواهی از آنان دیدگاه کاملی برای مسئولین در مورد نقاط قوت و ضعف استادان به‌دست می‌آید. هدف از این پژوهش بررسی حیطه‌های موجود در فرم‌های ارزشیابی از دیدگاه دانشجویان در دانشکده‌های پزشکی، پیراپزشکی و پرستاری و مامایی می‌باشد. روش بررسی: این تحقیق به صورت توصیفی انجام گرفت. 1683 برگ ارزشیابی دانشجویان از استادان هیأت علمی (73 نفر) مربوط به دانشکده‌های پزشکی، پیراپزشکی و پرستاری- مامایی بررسی شد. پرسش‌نامه‌ی دانشجویان پزشکی حاوی 15 سؤوال و دانشجویان پیراپزشکی و پرستاری مامایی 21 سؤوال بود که بر اساس مقیاس لیکرات از حیطه‌های مختلف مقرراتی، علمی و آموزشی، نظارتی و نگرشی تشکیل شده بود. نمرات سؤوالات از نمره‌ی 100 محاسبه شد، نمرات بالاتر بیانگر عملکرد مطلوب‌تراستادان می‌باشد. تجزیه و تحلیل داده‌ها به‌صورت آمار توصیفی با نرم‌افزار SPSS انجام شد. یافته‌ها: نتایج نشان داد مقایسه در سطوح کلی بین دانشکده‌ها، دانشکده‌ی پیراپزشکی با میانگین کل و انحراف معیار 61/3 ±50/85 نسبت به سایر دانشکده‌ها برتری دارد. دانشکده‌ی پیراپزشکی در حیطه‌ی مقرراتی با میانگین و انحراف معیار 89/3±01/91، دانشکده‌ی پزشکی در حیطه‌ی نگرشی با میانگین و انحراف معیار 45/5±48/90 و دانشکده‌ی پرستاری مامایی در حیطه‌ی مقرراتی با میانگین و انحراف معیار 25/4±34/88 بیشترین امتیاز را داشتند. نتیجه‌نهایی نشان می‌دهد، حیطه‌ی علمی و آموزشی نسبت به سایر حیطه‌ها در سطح پایین‌تر می‌باشد. نتایج حیطه‌ها (علمی و آموزشی، نظارتی و نگرشی) بین دانشکده‌ها معنی‌دار می‌باشد (0001/0=P). نتیجه‌گیری: به نظر می‌رسد با برنامه‌ریزی جهت برگزاری کارگاه‌های آموزشی، روش تدریس و تحقیق جهت ارتقای آموزش استادان، اعطا‌ی فرصت مطالعاتی و تشویق انجام کارهای تحقیقاتی و پژوهشی گام مؤثری جهت ارتقای سطح علمی و بالاخره عملکرد بالای استادان خواهد بود

    Role of Architecture in the Function and Specificity of Two Notch-Regulated Transcriptional Enhancer Modules

    Get PDF
    <div><p>In <em>Drosophila melanogaster</em>, <em>cis</em>-regulatory modules that are activated by the Notch cell–cell signaling pathway all contain two types of transcription factor binding sites: those for the pathway's transducing factor Suppressor of Hairless [Su(H)] and those for one or more tissue- or cell type–specific factors called “local activators.” The use of different “Su(H) plus local activator” motif combinations, or codes, is critical to ensure that only the correct subset of the broadly utilized Notch pathway's target genes are activated in each developmental context. However, much less is known about the role of enhancer “architecture”—the number, order, spacing, and orientation of its component transcription factor binding motifs—in determining the module's specificity. Here we investigate the relationship between architecture and function for two Notch-regulated enhancers with spatially distinct activities, each of which includes five high-affinity Su(H) sites. We find that the first, which is active specifically in the socket cells of external sensory organs, is largely resistant to perturbations of its architecture. By contrast, the second enhancer, active in the “non-SOP” cells of the proneural clusters from which neural precursors arise, is sensitive to even simple rearrangements of its transcription factor binding sites, responding with both loss of normal specificity and striking ectopic activity. Thus, diverse cryptic specificities can be inherent in an enhancer's particular combination of transcription factor binding motifs. We propose that for certain types of enhancer, architecture plays an essential role in determining specificity, not only by permitting factor–factor synergies necessary to generate the desired activity, but also by preventing other activator synergies that would otherwise lead to unwanted specificities.</p> </div

    Complete mitochondrial genome of the invasive brown alga <i>Sargassum muticum</i> (Sargassaceae, Phaeophyceae)

    No full text
    <div><p></p><p><i>Sargassum muticum</i> (Yendo) Fensholt is an invasive canopy-forming brown alga, expanding its presence from Northeast Asia to North America and Europe. The complete mitochondrial genome of <i>S. muticum</i> is characterized as a circular molecule of 34,720 bp. The overall AT content of <i>S. muticum</i> mitogenome is 63.41%. This mitogenome contains 65 genes typically found in brown algae, including 3 ribosomal RNA genes, 25 transfer RNA genes, 35 protein-coding genes, and 2 conserved open reading frames (ORFs). The gene order of mitogenome for <i>S. muticum</i> is identical to that for <i>Sargassum horneri, Fucus vesiculosus</i> and <i>Desmarestia viridis</i>. Phylogenetic analyses based on 35 protein-coding genes reveal that <i>S. muticum</i> has a close evolutionary relationship with <i>S. horneri</i> and a distant relationship with <i>Dictyota dichotoma</i>, supporting current taxonomic systems. The present investigation provides new molecular data for studies of <i>S. muticum</i> population diversity as well as comparative genomics in the Phaeophyceae.</p></div

    Mitochondrial genome of <i>Sargassum thunbergii</i>: conservation and variability of mitogenomes within the subgenus <i>Bactrophycus</i>

    No full text
    <p><i>Sargassum thunbergii</i> (Mertens ex Roth) Kuntze is a common brown seaweed in rocky intertidal zones along the northwestern Pacific coast. In the present study, we sequenced and annotated the complete mitochondrial genome of <i>S. thunbergii</i>. The circular <i>S. thunbergii</i> mitogenome is 34,748 bp in size and contains the same set of 65 genes as other mtDNAs in four <i>Sargassum</i> species. The genome organization including the gene order, overlapping regions between genes and the total length of inter-genic regions is highly similar to the other <i>Bactrophycus</i> species. The comparison by genome scale alignment displays only minor differences in gene lengths, but higher divergence in inter-genic spacer regions, especially the <i>cox3-atp6</i> inter-genic spacer. Mitochondrial phylogenomics suggests that <i>S. thunbergii</i> is tightly combined with <i>Sargassum muticum</i> and <i>Sargassum hemiphyllum</i> forming the sect. <i>Teretia</i> clade with strong support values (NJ/ML, 100%). The present data illustrate that the complete mtDNAs could provide a more complete assessment of their phylogenetic relationships.</p

    Neural activity related to direction identification in a veridical judgment task.

    No full text
    <p>(A) Neural response to the motion stimulus alone. (Left) Spatiotemporal firing pattern of pyramidal cells superimposed by the time course of the population vector (magenta). The arrow indicates the coherent motion direction (200°) of the stimulus. The motion stimulus is presented at 500 ms and lasts 1 s. (Right) Network activity profile at stimulus offset. The firing rate is calculated by counting the number of spikes fired by each neuron within 50 ms preceding the stimulus offset, divided by 50 ms. (B) Neural response to the microstimulation of MT neurons alone. The black arrow marks the microstimulated direction (90°). Same conventions as in (A). (C) Neural response to the simultaneous presentation of the motion stimulus and microstimulation. (Top three panels) Neural activity on three sample trials. (Bottom panels) Time course of population firing rates of two neural pools separately centered at 90° (red) and 200° (black), corresponding to the above three individual trials (from left to right).</p

    Winner-take-all versus vector averaging in direction identification.

    No full text
    <p>(A) The distribution of direction estimates on a circle (left) and the corresponding histogram with the binwidth of 5° (right). In each distribution, a wedge is defined by two directions (shown with open squares), separately denoting the median direction estimate for trials where the 80% coherence stimulus is applied alone and for trials where microstimulation is applied together with the 0% coherence stimulus. Three examples are displayed for Δ<i>θ</i> = 70°,110°, and 180°, respectively (from top to bottom). Six hundred simulations were performed for each case. (B) The index <i>R</i> as a function of the angular difference between the stimulus and microstimulated directions, Δ<i>θ</i>. Pure winner-take-all and vector averaging correspond to <i>R</i> = 1 and 2, respectively. The model displays a mixed strategy (with <i>R</i> between 1 and 2) for direction judgment over a wide range of Δ<i>θ</i> values. It also predicts that for a given intermediate Δ<i>θ</i>, a longer stimulus viewing time, for instance from 1 s (circle) to 2 s (cross), enhances the preponderance of the winner-take-all regime.</p

    ASE5 and the mα enhancer are active in distinct cell types in development.

    No full text
    <p>(A) Diagram showing the relationship between the expression specificities of the mα enhancer and ASE5. Drawing at left represents a late third-instar wing imaginal disc; expression territories of the mα enhancer are shown in green. This enhancer is active primarily in proneural clusters (PNCs), each of which gives rise to a sensory organ precursor (SOP) for one of the external sensory organs of the adult fly. One PNC is shown in expanded form in the middle of the panel, to illustrate that the mα enhancer is active specifically in the “non-SOP” cells of each cluster (green), and not in the SOP (white circle) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002796#pgen.1002796-Castro1" target="_blank">[11]</a>. The right part of the panel illustrates the cell lineage by which the SOP generates the four cells that make up an external mechanosensory organ. ASE5 is active specifically in one of these post-mitotic progeny cells, the socket cell (green), which is also marked by high-level expression of Su(H) (red) <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002796#pgen.1002796-Barolo2" target="_blank">[10]</a>. (B) Diagrams illustrating the architecture of the two transcriptional enhancer modules analyzed in this study. ASE5 is defined by a 0.4-kb genomic DNA fragment <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002796#pgen.1002796-Barolo2" target="_blank">[10]</a> (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002796#pgen.1002796.s010" target="_blank">Text S1</a>), while the mα enhancer is contained within a 1.0-kb fragment <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1002796#pgen.1002796-Castro1" target="_blank">[11]</a>. Known transcription factor binding sites within each module are shown. Essential motifs within ASE5 include five high-affinity Su(H) sites (green S), four strong Vvl sites (blue V1, V2), and a single 11-bp sequence (AACGCGAAGCT) designated the A motif (red A). Functional motifs within the mα enhancer include five high-affinity Su(H) sites, two strong Vvl sites, and a proneural protein “E box” site (red E). Motifs are defined as follows: S, YGTGDGAA (TGTGTGAA omitted); V1, RYRYAAAT; V2, AATTAA; E, RCAGSTG. (C–P) Distinct specificities of ASE5 and the mα enhancer are demonstrated by the patterns of GFP reporter expression (green) they drive in transgenic flies at three different developmental stages. Shown are wing imaginal discs of late third-instar larvae (C, J), pupal nota at 24 hours APF (D–F, K–M), and dorsal epithelium of adult abdomen (G–I, N–P). Socket cells of external sensory organs are marked by anti-Su(H) antibody stain (red). Note that <i>ASE5-GFP</i> is active specifically in both pupal (D–F) and adult (G–I) socket cells [as marked by Su(H) immunoreactivity], but is inactive in the PNCs of both the third-instar wing disc (compare C to J) and the pupal notum (compare D to K). By contrast, <i>mα-GFP</i> is specifically active in PNCs at both stages (J, K) and also exhibits expression in the wing margin territory (J), but is inactive in both pupal — note lack of overlap between green (<i>mα-GFP</i>) and red [Su(H)] signals in M — and adult socket cells (N–P).</p
    corecore