2,638 research outputs found

    Generalized pairwise z-complementary codes

    Get PDF
    An approach to generate generalized pairwise Z-complementary (GPZ) codes, which works in pairs in order to offer a zero correlation zone (ZCZ) in the vicinity of zero phase shift and fit extremely well in power efficient quadrature carrier modems, is introduced in this letter. Each GPZ code has MK sequences, each of length 4NK, whereMis the number of Z-complementary mates, K is a factor to perform Walsh–Hadamard expansions, and N is the sequence length of the Z-complementary code. The proposed GPZ codes include the generalized pairwise complementary (GPC)codes as special cases

    Energy Efficiency Optimization for D2D communications in UAV-assisted Networks with SWIPT

    Get PDF
    This paper investigates the energy efficiency (EE) optimization problem for device-to-device (D2D) communications underlaying non-orthogonal multiple access (NOMA) unmanned aerial vehicles (UAVs)-assisted networks with simultaneous wireless information and power transfer (SWIPT). Our aim is to maximize the energy efficiency of the system while satisfying the constraints of transmission rate and transmission power budget. However, the considered EE optimization problem is non-convex involving joint optimization of the UAV's location, beam pattern, power control and time scheduling, which is difficult to solve directly. To tackle this problem, we develop an efficient resource allocation algorithm to decompose the original problem into several sub-problems and solve them sequentially. Specifically, we first apply the Dinkelbach method to transform the fraction problem to a subtractive-form one, and propose a mulitiobjective evolutionary algorithm based on decomposition (MOEA/D) based algorithm to optimize the beam pattern. We then optimize UAV's location and power control by applying the successive convex optimization techniques. Finally, after solving the above variables, the original problem is transformed into a single-variable problem with respect to the charging time, which is a linear problem and can be solved directly. Numerical results verify that the significant EE gain can be obtained by our proposed method as compared to the benchmark schemes

    A Deep Learning-Based Approach to Resource Allocation in UAV-aided Wireless Powered MEC Networks

    Get PDF
    Beamforming and non-orthogonal multiple access (NOMA) are two key techniques for achieving spectral efficient communication in the fifth generation and beyond wireless networks. In this paper, we jointly apply a hybrid beamforming and NOMA techniques to an unmanned aerial vehicle (UAV)-carried wireless-powered mobile edge computing (MEC) system, within which the UAV is mounted with a wireless power charger and the MEC platform delivers energy and computing services to Internet of Things (IoT) devices. We aim to maximize the sum computation rate at all IoT devices whilst satisfying the constraint of energy harvesting and coverage. The considered optimization problem is non-convex involving joint optimization of the UAV’s 3D placement and hybrid beamforming matrices as well as computation resource allocation in partial offloading pattern, and thus is quite difficult to tackle directly. By applying the polyhedral annexation method and the deep deterministic policy gradient (DDPG) algorithm, we propose an effective algorithm to derive the closed-form solution for the optimal 3D deployment of the UAV, and find the solution for the hybrid beamformer. A resource allocation algorithm for partial offloading pattern is thereby proposed. Simulation results demonstrate that our designed algorithm yields a significant computation performance enhancement as compared to the benchmark schemes

    Cross-Layer Optimization for Industrial Internet of Things in NOMA-based C-RANs

    Get PDF
    This paper investigates non-orthogonal multiple access (NOMA)-based cloud radio access networks (C-RANs), where edge caching is adopted to cut down the crowdedness of the fronthaul links. We aim to maximize the energy efficency (EE) by jointly optimizing the power allocation, analog and digital precoding, which turns out to be an intractable non-convex optimization problem. To tackle this problem, we first select cluster heads using the selecting cluster-head (SCH) algorithm, where the analog precoding matrix can be resolved by means of maximizing the array gains. Then, the device grouping algorithm is proposed to group devices according to the equivalent channel correlations, and thus the NOMA devices in the same beam are capable of sharing the same digital precoding vector. Finally, joint digital precoding design and power allocation algorithm is proposed to decompose the resultant optimization problem into two subproblems and solve them iteratively by applying Taylor expansion operation and the minimum mean square error (MMSE) detection. Simulation results validate that the proposed NOMA-based C-RANs with hybrid precoding (HP) scheme can achieve higher SE and EE than traditional orthogonal multiple access (OMA)-based approach and two-stage HP scheme

    Energy Efficiency Optimization for D2D Communications Underlaying UAV-assisted Industrial IoT Networks with SWIPT

    Get PDF
    The industrial Internet of Things (IIoT) has been viewed as a typical application for the fifth generation (5G) mobile networks. This paper investigates the energy efficiency (EE) optimization problem for the device-to-device (D2D) communications underlaying unmanned aerial vehicles (UAVs)-assisted IIoT networks with simultaneous wireless information and power transfer (SWIPT). We aim to maximize the EE of the system while satisfying the constraints of transmission rate and transmission power budget. However, the designed EE optimization problem is non-convex involving joint optimization of the UAV’s location, beam pattern, power control and time scheduling, which is difficult to tackle directly. To solve this problem, we present a joint UAV location and resource allocation algorithm to decouple the original problem into several sub-problems and solve them sequentially. Specifically, we first apply the Dinkelbach method to transform the fraction problem to a subtractive-form one, and propose a mulitiobjective evolutionary algorithm based on decomposition (MOEA/D) based algorithm to optimize the beam pattern. We then optimize UAV’s location and power control using the successive convex optimization techniques. Finally, after solving the above variables, the original problem can be transformed into a single-variable problem with respect to the charging time, which is linear and can be tackled directly. Numerical results verify that significant EE gain can be obtained by our proposed algorithm as compared to the benchmark schemes

    Energy Efficiency Optimization for Plane Spiral OAM Mode-Group Based MIMO-NOMA Systems

    Get PDF
    In this paper, a plane spiral orbital angular momentum (PS-OAM) mode-groups (MGs) based multi-user multiple-input-multiple-out-put (MIMO) non-orthogonal multiple access (NOMA) system is studied, where a base station (BS) transmits date to multiple users by utilizing the generated PSOAM beams. For such scenario, the interference between users in different PSOAM-mode groups can be avoided, which leads to a significant performance enhancement. We aim to maximize the energy efficiency (EE) of the system subject to the total transmission power constraint and the minimum rate constraint. This design problem is non-convex by optimizing the power allocation, and thus is quite difficult to tackle directly. To solve this issue, we present a bisection-based power allocation algorithm where the bisection method is exploited in the outer layer to obtain the optimal EE and a power distributed iterative algorithm is exploited in the inner layer to optimize the transmit power. Simulation results validate the theoretical findings and demonstrate the proposed system can achieve better performance than the traditional multi-user MIMO system in terms of EE

    Resource Allocation for Power Minimization in RIS-assisted Multi-UAV Networks with NOMA

    Get PDF
    Reconfigurable intelligent surface (RIS) is a promising technique that smartly reshapes wireless propagation environment in the future wireless networks. In this paper, we apply RIS to an unmanned aerial vehicle (UAV)-assisted non-orthogonal multiple access (NOMA) network, in which the transmit signals from multiple UAVs to ground users are strengthened through RIS. Our objective is to minimize the power consumption of the system while meeting the constraints of minimum data rate for users and minimum inter-UAV distance. The formulated optimization problem is non-convex by jointly optimizing the position of UAVs, RIS reflection coefficients, transmit power, active beamforming vectors and decoding order, and thus is quite hard to solve optimally. To tackle this problem, we divide the resultant optimization problem into four independent subproblems, and solve them in an iterative manner. In particular, we first consider the sub-solution of UAVs placement which can be obtained via the successive convex approximation (SCA) and maximum ratio transmission (MRT). By applying the Gaussian randomization procedure, we yield the closed-form expression for the RIS reflection coefficients. Subsequently, the transmit power is optimized using standard convex optimization methods. Finally, a dynamic-order decoding scheme is presented for optimizing the NOMA decoding order in order to guarantee fairness among users. Simulation results verify that our designed joint UAV deployment and resource allocation scheme can effectively reduce the total power consumption compared to the benchmark methods, thus verifying the advantages of combining RIS into the multi-UAV assisted NOMA networks

    Energy Efficiency Optimization for PSOAM Mode-Groups based MIMO-NOMA Systems

    Get PDF
    Plane spiral orbital angular momentum (PSOAM) mode-groups (MGs) and multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) serve as two emerging techniques for achieving high spectral efficiency (SE) in the next-generation networks. In this paper, a PSOAM MGs based multi-user MIMO-NOMA system is studied, where the base station transmits data to users by utilizing the generated PSOAM beams. For such scenario, the interference between users in different PSOAM mode groups can be avoided, which leads to a significant performance enhancement. We aim to maximize the energy efficiency (EE) of the system subject to the constraints of the total transmission power and the minimum data rate. This designed optimization problem is non-convex owing to the interference among users, and hence is quite difficult to tackle directly. To solve this issue, we develop a dual layer resource allocation algorithm where the bisection method is exploited in the outer layer to obtain the optimal EE and a resource distributed iterative algorithm is exploited in the inner layer to optimize the transmit power. Besides, an alternative resource allocation algorithm with Deep Belief Networks (DBN) is proposed to cope with the requirement for low computational complexity. Simulation results verify the theoretical findings and demonstrate the proposed algorithms on the PSOAM MGs based MIMO-NOMA system can obtain a better performance comparing to the conventional MIMO-NOMA system in terms of EE

    Joint 3D Trajectory and Power Optimization for UAV-aided mmWave MIMO-NOMA Networks

    Get PDF
    This paper considers an unmanned aerial vehicle (UAV)-aided millimeter Wave (mmWave) multiple-input-multiple-output (MIMO) non-orthogonal multiple access (NOMA) system, where a UAV serves as a flying base station (BS) to provide wireless access services to a set of Internet of Things (IoT) devices in different clusters. We aim to maximize the downlink sum rate by jointly optimizing the three-dimensional (3D) placement of the UAV, beam pattern and transmit power. To address this problem, we first transform the non-convex problem into a total path loss minimization problem, and hence the optimal 3D placement of the UAV can be achieved via standard convex optimization techniques. Then, the multiobjective evolutionary algorithm based on decomposition (MOEA/D) based algorithm is presented for the shaped-beam pattern synthesis of an antenna array. Finally, by transforming the original problem into an optimal power allocation problem under the fixed 3D placement of the UAV and beam pattern, we derive the closed-form expression of transmit power based on Karush-Kuhn-Tucker (KKT) conditions. In addition, inspired by fraction programming (FP), we propose a FP-based suboptimal algorithm to achieve a near-optimal performance. Numerical results demonstrate that the proposed algorithm achieves a significant performance gain in terms of sum rate for all IoT devices, as compared with orthogonal frequency division multiple access (OFDMA) scheme

    UAV-Enabled SWIPT in IoT Networks for Emergency Communications

    Get PDF
    Energy-limited devices and connectivity in complicated environments are two main challenges for Internet of Things (IoT)-enabled mobile networks, especially when IoT devices are distributed in a disaster area. Unmanned aerial vehicle (UAV)-enabled simultaneous wireless information and power transfer (SWIPT) is emerging as a promising technique to tackle the above problems. In this article, we establish an emergency communications framework of UAV-enabled SWIPT for IoT networks, where the disaster scenarios are classified into three cases, namely, dense areas, wide areas and emergency areas. First, to realize wireless power transfer for IoT devices in dense areas, a UAV-enabled wireless power transfer system is considered where a UAV acts as a wireless charger and delivers energy to a set of energy receivers. Then, a joint trajectory planning and resource scheduling scheme for a multi-UAVs system is discussed to provide wireless services for IoT devices in wide areas. Furthermore, an intelligent prediction mechanism is designed to predict service requirements (i.e., data transmission and battery charging) of the devices in emergency areas, and accordingly, a dynamic path planning scheme is established to improve the energy efficiency (EE) of the system. Simulation results demonstrate the effectiveness of the above schemes. Finally, potential research directions and challenges are also discussed
    • …
    corecore