
Energy Efficiency Optimization for D2D
Communications Underlaying UAV-assisted

Industrial IoT Networks with SWIPT
Zhijie Su, Wanmei Feng, Student Member, IEEE, Jie Tang, Senior Member, IEEE, Zhen Chen, Member, IEEE,

Yuli Fu, Nan Zhao, Senior Member, IEEE, Kai-Kit Wong, Fellow, IEEE

Abstract—The industrial Internet of Things (IIoT) has been
viewed as a typical application for the fifth generation (5G) mo-
bile networks. This paper investigates the energy efficiency (EE)
optimization problem for the device-to-device (D2D) communi-
cations underlaying unmanned aerial vehicles (UAVs)-assisted
IIoT networks with simultaneous wireless information and power
transfer (SWIPT). We aim to maximize the EE of the system
while satisfying the constraints of transmission rate and trans-
mission power budget. However, the designed EE optimization
problem is non-convex involving joint optimization of the UAV’s
location, beam pattern, power control and time scheduling, which
is difficult to tackle directly. To solve this problem, we present a
joint UAV location and resource allocation algorithm to decouple
the original problem into several sub-problems and solve them
sequentially. Specifically, we first apply the Dinkelbach method
to transform the fraction problem to a subtractive-form one,
and propose a mulitiobjective evolutionary algorithm based on
decomposition (MOEA/D) based algorithm to optimize the beam
pattern. We then optimize UAV’s location and power control
using the successive convex optimization techniques. Finally,
after solving the above variables, the original problem can be
transformed into a single-variable problem with respect to the
charging time, which is linear and can be tackled directly.
Numerical results verify that significant EE gain can be obtained
by our proposed algorithm as compared to the benchmark
schemes.

Index Terms—Energy efficiency (EE), device-to-device (D2D)
communications, unmanned aerial vehicle (UAV), resource allo-
cation.
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I. INTRODUCTION

Industrial Internet of Things (IIoT), as a subset of IoT
devices for industrial applications, brings together a plenty
of smart devices to collect and process massive amounts
of industrial data. Massive Machine-Type communications
(mMTC), which is an important scenario in the fifth generation
(5G) mobile networks, is capable of supporting massive con-
nections of IIoT devices [1]. Nevertheless, a massive number
of connected IIoT devices will cause the explosive growth
of data traffic in IIoT networks, resulting in enormous power
consumption [2]. Thus, how to improve the energy efficiency
(EE) of IIoT network is still an open problem.

Simultaneous wireless information and power transfer
(SWIPT), which can realize the simultaneous transmission
of wireless information and energy so as to extend battery-
life of IIoT nodes, has attract great attention recently [3].
In addition, Device-to-Device (D2D) communication is also
one of the key technologies in 5G mobile networks. D2D
network allows direct communication between the devices,
which can enhance the spectrum utilization and mitigate
the traffic load on the base stations (BSs). In recent years,
many researchers have focused on investigating the resource
allocation problems in D2D communication [4]–[8]. In [4],
the authors focused on the power allocation in D2D networks,
and confirmed that the combining SWIPT and D2D could
further improve the EE. In [5], the authors considered the D2D
communication underlaying cellular networks, and developed
a resource allocation algorithm to maximize the throughput
of the D2D systems. In [6], the authors considered the D2D
underlaid cellular networks, and proposed a mode selection
algorithm to maximize the sum rate of the devices. In [7], the
authors presented a distributed coalition formation algorithm
to maximize the EE of D2D multimedia system. In [8], the
centralized and distributed D2D communication scheduling
methods were designed to maximize the throughput of the
cellular-aided D2D networks.

However, when IIoT devices are deployed in remote areas or
disaster areas, it is inefficient to establish communication links
with traditional base stations (BSs) due to long-distance trans-
mission. Owning to the advantages of great maneuverability,
wide coverage, and high flexibility, unmanned aerial vehicles
(UAVs) have been widely deployed in various scenarios to
provide wireless services for users especially for the edge
users. Therefore, UAVs can act as the air BSs to provide
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efficient information and energy transmission services for
users that distributed in geographically constrained areas. In
[9], the authors focused on the UAV-based communication
networks and proposed an analytical method to adjust the
height of UAV to maximize the number of served users.
In [10], the authors optimized the location of the UAV, in
order to employ the least number of UAVs to fully cover a
specific area while meeting the communication requirements.
In [11], the authors investigated the uplink transmission in
UAV-assisted wireless networks, where an optimal location
planning method was developed to optimize the transmission
rate of the devices. In [12], the authors further considered the
UAV-assisted wireless power transfer system, and maximized
the sum received power of all devices by the successive
convex programming-based trajectory design method. In [13],
a sum rate maximization problem was investigated in a UAV-
aided mmWave network, where the 3D deployment of UAV,
power allocation and beam pattern were considered. In [14],
a secrecy rate optimization problem was studied in a secure
UAV-assisted SWIPT network, and solved by an alternative
optimization method.

In addition, non-orthogonal multiple access (NOMA) is
viewed as a key technique to achieve high spectrum efficiency
in the next generation wireless communication systems. In
particular, by exploiting superposition coding (SC) at the
transmitters and successive interference cancellation (SIC) at
the receivers, NOMA schemes enable multiple users served
at the same resource block. Moreover, the users with great
channel condition are assigned a lower transmit power, while
the users with poor channel condition are allocated a higher
transmit power. These features make NOMA capable of
guaranteeing the fairness of users as well as improving the
spectral efficiency [15], [16]. For example, the authors in [15]
developed a dynamic power allocation algorithm to minimize
the outage probability and maximize the average rate of the
downlink and uplink NOMA systems. In [16], an iterative
algorithm was developed to maximize the EE in a NOMA
communication network with SWIPT, where the power allo-
cation was taken into account. Simulation results demonstrated
that the combination of SWIPT and NOMA could further
improve the EE of the communication network. Based on
the prior works on NOMA-enabled wireless networks, the
applications of UAVs within NOMA networks can further
improve the system throughput since they can shorten the
transmission distance and increase the channel gain [17]–[19].
In [17], the authors investigated the time sharing (TS) NOMA
networks, and developed a resource allocation algorithm to
maximize the EE of the UAV-TS-NOMA networks. Besides,
the energy consumption minimization problem for the NOMA-
aided UAV data collection system was investigated in [18]. To
guarantee the quality of service (QoS), the authors developed
a data collection optimization algorithm using the generalized
benders decomposition methods. The authors in [19] studied
the UAV-assisted NOMA networks for emergency communi-
cations. Firstly, a deep-Q-learning-based scheme was proposed
to maximize the sum rate of the UAV-enabled uplink NOMA
networks. Then, for the multi-UAV enabled NOMA networks,
a joint UAV deployment and resource allocation algorithm was

provided to maximize the minimum throughput of the devices.
In fact, although the sum-throughput of the IIoT networks

can be improved by the NOMA based UAV communication
systems, the performance gain is very limited. This is because
the received signal strength is significantly degraded by severe
path loss, especially for IIoT devices distributed in wide areas.
In this case, UAVs require a higher power consumption to
satisfy the QoS requirements, which in turn decreases the EE
performance. To tackle this problem, beamforming technique
is used to focus the signal strength toward the receivers for
improving the system performance [20]–[23]. The authors
in [20] considered the massive multiple-input multiple-output
(MIMO) hybrid beamforming system, and proposed a beam-
oriented digital predistortion technique to obtain linearization
of the transmitted signal. Furthermore, the authors in [21]
aimed at maximizing the total energy harvest of the users by
jointly optimizing the placement of UAV, the beam pattern
and the charging time in a UAV-enabled wireless energy
transfer system. The authors in [22] provided a low complexity
resource assignment algorithm to maximize the EE for a
wireless powered sensor system, and applied the beamforming
technique to further improve the energy transfer efficiency. The
work in [23] aimed to maximize the minimum EE of the users
for the multicell multiuser joint transmission systems, and a
fairness energy efficient algorithm was provided to adjust the
beamforming vector.

A. Contributions

Previous works focus on studying the resource allocation
problem for the D2D communication networks [6], [7], and
UAV-assisted D2D communication networks [24], [25], where
the throughput is maximized through the alternative optimiza-
tion methods. However, these frameworks cannot be directly
used to provide simultaneous information and energy flow for
the energy-constrained IIoT devices. In addition, the works in
[9]–[11] study the resource allocation schemes in UAV-enabled
communication networks, which cannot be directly employed
to deliver effective services for devices deployed in remote
areas, since only a single antenna is considered. The works
in [14], [26] focus on investigating the effective algorithms
to maximize the received power in UAV-assisted SWIPT net-
works. These works cannot be directly applied to enhance the
EE of the system. Motivated by the aforementioned observa-
tions, we investigate the EE maximization problem in a UAV-
assisted D2D communication IIoT network. In addition, the
beanforming technique and NOMA are considered to further
enhance the system performance. The main contributions of
this paper are summarized as follows:
• We formulate the design of resource allocation for IIoT

devices in a UAV-assisted D2D communication network
with SWIPT. We aim to maximize the EE at all IIoT
devices while satisfying the constraints of devices’ QoS
demands and maximum transmit power. The considered
optimization problem is non-convex involving joint op-
timization of the UAV location, power allocation, power
splitting ratio and beam pattern, which is quite difficult
to tackle directly. To tackle this problem, we develop a
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joint UAV location and resource algorithm that optimizes
the variables sequentially.

• First, to tackle the non-convex optimization problem,
we apply the Dinkelbach method to convert the original
fractional optimization problem to a subtractive-form
one. Then, we apply the successive convex optimization
techniques to obtain the approximate convex optimization
problems to obtain the location of UAV. After that, we
adopt the multi-objective evolutionary algorithm based
on decomposition (MOEA/D) [27] to control the beam
pattern. In addition, we prove that the optimization prob-
lem is concave with respect to the power splitting ratio
and transmit power in SWIPT phase and solve it using
the standard convex optimization approaches. Besides, we
also apply the successive convex optimization techniques
to optimize the transmit power in D2D phase. Finally,
with the solved variables, the considered problem is trans-
formed into a linear programming problem which can be
tackled by the standard convex optimization techniques.

• Numerical results verify that significant EE performance
gain can be obtained through our proposed methods as
compared to the benchmark schemes, thereby demon-
strating the advantages of integrating NOMA and beam-
forming technique in UAV-assisted IIoT networks with
SWIPT.

B. Organization and Notation

The remaining of this paper is organized as follows. The
system model and the corresponding EE optimization problem
are discussed in Section II. In Section III, we propose the
iterative algorithm via jointly optimizing the location of UAV,
beam pattern, power allocation, power splitting (PS) ratio and
time scheduling. The numerical results are discussed in Section
IV to verify the theoretical findings. Finally, conclusions are
presented in Section V.

The following notations are used throughout this paper.
Scalars and vectors are indicated by non-bold and bold case
letters respectively. For a vector a, aT denotes its transpose,
aH indicates its complex conjugate transpose, and ‖a‖
represents its Euclidean norm.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Model

We consider a D2D communications in UAV-assisted IIoT
network with SWIPT, which is shown in Fig. 1. The UAV is
mounted with M×N antenna array, and K ≥ 2 D2D pairs are
equipped with one single antenna due to the limitations of the
hardware size and battery power. Each D2D transmitter (D2D-
TX) k = {1, 2, ...,K} has a fixed location on the ground which
is expressed as zTxk =

(
xTxk , yTxk

)
, and the kth D2D receiver

(D2D-RX) is expressed as zRxk =
(
xRxk , yRxk

)
. The horizontal

location of UAV is denoted as zu = (xu, yu), and the UAV
is set to work at a fixed altitude H. The whole period To
contains two phases. In the SWIPT phase with duration τSTo
(0 ≤ τS ≤ 1), the UAV transmits information and power to

Fig. 1. Illustration of a UAV-assisted D2D communication network with
SWIPT.

D2D-TXs. In the D2D phase with duration τDTo (τD + τS ≤
1), the D2D-TXs transmit information to D2D-RXs using the
harvested energy in the SWIPT phase. For simplicity, we set
To = 1. Sepcifically, in the SWIPT phase, UAV serves as
a flying BS to transmit power and information to D2D-TX
using NOMA. Since the UAV base station has the advantage
of mobile flexibility, we suppose that the communication links
between the UAV and the D2D-TXs are line-of-sight (LOS)
dominated [28]. Thus, the channel gain between the UAV and
the kth D2D-TX is expressed as [29]

hk =
√
ρ0d
−2
k a(θ, φ), (1)

where ρ0 denotes the channel power gain at a reference
distance of d0 = 1 m. The distance between the UAV and
kth D2D-TX is dk =

√(
xTxk − xu

)2
+
(
yTxk − yu

)2
+H2,

and a(θ, φ) denotes the steering vector, which is given by

a(θ, φ) =
[
1, · · · , ej2π/λd sin(θ)[(j−1) sin(φ)+(i−1) cos(φ)],

· · · , ej2π/λd sin(θ)[(N−1) sin(φ)+(M−1) cos(φ)]
]T
,

(2)
where θ is the elevation angle and φ indicates the azimuth
angle of the LOS path. λ represents the wavelength and d
is the spacing between antenna elements. i and j denote the
coordinate of antenna elements. The channel power gain from
the UAV to the kth D2D-TX is formulated as∣∣hHk w

∣∣2 =
ρ0

∣∣aH(θ, φ)w
∣∣2(

xTxk − xu
)2

+
(
yTxk − yu

)2
+H2

, (3)

where w denotes the beamforming vector. E(θ, φ) =
aH(θ, φ)w is the synthesized pattern of the antenna array.
Each D2D-TX comprises of an information decoding (ID)
circuit and an energy harvesting (EH) rectification circuit.
Power splitting method is adopted to split the signal into two
parts, one of which is exploited for energy harvesting whilst
the other is used to decode the information. The transmission
power of UAV is limited to Pmax, and the power allocated to
the kth D2D-TX is assumed to be PSk . The PS ratio is divided
into two part, where αSk is the fraction of transmission power
allocated to the kth D2D-TX for ID, and 1 − αSk represents
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the ratio for EH. Thus, the signal received by the kth D2D-TX
for ID is expressed as

yIDk =
√
αSk g

S
k

K∑
i=1

√
PSi si +N0, (4)

where gSk =
∣∣hHk w

∣∣2, si denotes the signal from UAV to
the ith D2D-TX, and N0 is the additive Gaussian white
noise (AWGN) with power σ2. With successive interference
cancellation (SIC) operation, the kth D2D-TX will detect
the jth D2D-TX’s information, j < k, and remove the
information from its observation. The message for jth D2D-
TX, j > k, will be treated as noise at the kth D2D-TX. Thus,
after applying the NOMA technique with SIC, the achievable
transmission rate for D2D-TX k is given by

RSk = log2

(
1 +

αSk g
S
kP

S
k

σ2 + αSk g
S
k

∑K
i=k+1 P

S
i

)
. (5)

The signal received by the kth D2D-TX for EH is expressed
as

yEHk =
√

1− αSk g
S
k

K∑
i=1

√
PSi si +N0, (6)

Then, the corresponding harvested energy at the kth D2D-TX
is expressed as

ESk = τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi , (7)

where η indicates the energy conversion efficiency. Thus, the
total energy consumption in the SWIPT phase is expressed as

EStotal = τS

(
ζ

K∑
k=1

PSk + PSC + Phov

)
−

K∑
k=1

ESk , (8)

where ζ represents the drain efficiency of the power amplifier,
PSC is the energy consumed by the hardware in the SWIPT
phase, and Phov denotes the power consumed by the UAV
during hovering.

In the D2D phase, we assume that the communication links
between the D2D-TX and D2D-RX is also LoS dominated
due to the short-distance communication of D2D links [30].
Thus, the channel power gain from the mth D2D-TX to the
kth D2D-RX is expressed as

gDm,k =
ρ0(

xTm − xRxk
)2

+
(
yTm − yRxk

)2 . (9)

Let PDk be the transmission power of the kth D2D-TX. Then,
the achievable transmission rate of the kth D2D-RX is given
by

RDk = log2

(
1 +

gDk,kP
D
k

σ2 +
∑k
i=1,i6=k g

D
i,kP

D
i

)
. (10)

In addition, the total energy consumption in the D2D phase is
formulated as

EDtotal =
K∑
k=1

EDk = τD(
K∑
k=1

PDk + PDC ), (11)

where PDC denotes the energy consumed by the hardware
during the D2D phase. Therefore, the EE of the considered
network is given by

λEE =
TRtotal
Etotal

=
τS
∑K
k=1R

S
k + τD

∑K
k=1R

D
k

EStotal + EDtotal
. (12)

B. Problem Formulation

In this paper, we aim to maximize the EE of the considered
D2D communications underlaying UAV-assisted IIoT network
while satisfying the constraints of minimum transmission rate
and total transmission power of UAV. Mathematically, the
optimization problem is expressed as

max
E(θ,φ),PS,D

k ,zu,αS
k ,τS,D

λEE (13a)

s.t. RSk ≥ RSmin,∀k ∈ K, (13b)

RDk ≥ RDmin,∀k ∈ K, (13c)
K∑
k=1

PSk ≤ Pmax, (13d)

EDk ≤ ESk ,∀k ∈ K, (13e)

τS + τD ≤ 1, (13f)

0 ≤ τS , τD ≤ 1, (13g)

0 ≤ αSk ≤ 1. (13h)

Constraints (13b), (13c) indicate that the achievable rate in
the SWIPT phase and the D2D phase should satisfy the
minimum transmission rate constraint RSmin and RDmin re-
spectively to ensure the QoS of the IIoT devices. Constraint
(13d) denotes that the transmission power of UAV cannot
exceed the power budget Pmax. Constraint (13e) guarantees
that the energy consumed by each D2D-TX cannot exceed its
harvested energy from the UAV. Constraints (13f) and (13g)
limit the time switching ratio for SWIPT phase and D2D
phase, and constraint (13h) limits the power splitting ratio for
ID and EH. Problem (13) is a non-convex problem due to the
coupling variables, which is challenging to solve. To solve this
problem, we develop an efficient resource allocation algorithm
by optimizing the above variables sequentially.

III. THE ITERATIVE JOINT UAV LOCATION AND
RESOURCE ALLOCATION ALGORITHM

In this section, we develop an iterative joint UAV location
and resource allocation algorithm where the designed problem
is decoupled into several problems and solved then sequen-
tially. Specifically, since the beam pattern design requires the
beam scanning angles, the UAV location should be determined
first. Then, based on the acquisition of angle information, the
beam pattern is obtained. Subsequently, with the fixed UAV’s
placement and beam pattern design, the PS ratio and power
allocation in SWIPT phase are optimized. Finally, the power
allocation in D2D phase is optimized to maximize the EE of
the system. Therefore, by exploiting the Dinkelbach method,
the original problem is converted into a subtractive-form
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one. Then, we employ the successive convex optimization
technique to optimize the UAV location. Subsequently, we
propose a beamforming design method to optimize the beam
pattern. In addition, the standard convex optimization approach
is employed to obtain the optimal PS ratio and transmit power
in SWIPT phase. The power allocation in D2D phase is
determined by the successive convex optimization technique.
Finally, a linear programming (LP) problem with respect to
time scheduling is tackled using the standard convex optimiza-
tion techniques. Since the objective function of problem (13)
is in fractional form, it is difficult to tackle. Thus, we apply the
Dinkelbach method [31] to solve this fractional optimization
problem. Specifically, we convert the fraction problem to a
subtractive-form one based on the following proposition.

Proposition 1: The achievable EE q∗ can be obtained as
follows

max
E(θ,φ),PS,D

k ,zu,αS
k ,τS,D

UR−q∗UT = U∗R−q∗U∗T = 0, (14)

where

UR = τS

K∑
k=1

RSk + τD

K∑
k=1

RSD ≥ 0, (15)

UT = EStotal + EDtotal ≥ 0, (16)

and
q∗ =

U∗R
U∗T

. (17)

Proof : Please refer to [31] for a proof of Proposition 1.
From [31], the equivalent subtractive form can replace

the original objective function. [31] further shows that the
optimal solution can be obtained according to the conditions
of the equation in Proposition 1. Thus, with the given q, the
equivalent objective function is given by

max
E(θ,φ),PS,D

k ,zu,αS
k ,τS,D

λ
′

EE

=τS

K∑
k=1

RSk + τD

K∑
k=1

RDk − q
(
EStotal + EDtotal

)
.

(18)

Therefore, we can tackle this subtractive-form problem by
optimizing the UAV location, beam pattern, power allocation
and time scheduling sequentially, and update q∗ according to
(17). Furthermore, the convergence of the Dinkelbach-based
method has been proved in [16].

A. Location Optimization

For a given (q, E(θ, φ), PSk , α
S
k , P

D
k , τS , τD), we focus on

the optimization problem for the UAV location zu. Problem
(13) is reformulated as:

max
zu

λ
′

EE (19a)

s.t. log2

(
1 +

αSk g
S
kP

S
k

σ2 + αSk g
S
k

∑K
i=k+1 P

S
i

)
≥ RSmin,∀k ∈ K,

(19b)

τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi ≥ EDk ,∀k ∈ K. (19c)

Constraint (19b) is non-convex with respect to zu. Applying
the successive convex optimization approach, RSk is first
reformulated as

RSk = R̃Sk − R̂Sk , (20)

where

R̃Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTxk − zu∥∥2

K∑
i=1

PSi + σ2

)
, (21)

R̂Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTxk − zu∥∥2

K∑
i=k+1

PSi + σ2

)
. (22)

Noted that R̃Sk is neither concave nor convex with respect
to zu, but convex with respect to

∥∥zTxk − zu∥∥2
. We define

the local point zru as the given location of UAV in the rth
iteration. Then, we can obtain the globally lower bound of
(21) by applying the first order Taylor expansion [32], which
can be formulated as

R̃Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTxk − zu∥∥2

K∑
i=1

PSi + σ2

)

≥
k∑
i=1

−Ark(
∥∥zTxk − zu∥∥2 −

∥∥zTxk − zru∥∥2
)

+Brk , R̃Slbk ,

(23)

where Ark and Brk can be calculated as

Ark =

PS
i ρ0α

S
k |E(θ,φ)|2(

H2+‖zT
k−zr

u‖2
)2 log2(e)

ρ0αS
k |E(θ,φ)|2

H2+‖zT
k−zr

u‖2
∑k
l=1 P

S
l + σ2

, (24)

and

Brk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTk − zru

∥∥2

k∑
l=1

PSl + σ2

)
. (25)

With (20) and (23), (19b) can be reformulated as

R̃Slbk − R̂Sk ≥ RSmin. (26)

However, (26) is still non-convex due to R̂Sk . Thus, we
introduce the slack variable S =

{
Sk =

∥∥zTk − zu
∥∥2
,∀k
}

,
which should satisfy the following constraints

Sk ≤
∥∥zTk − zu

∥∥2
,∀k. (27)

Then, R̂Sk can be reformulated as

R̂Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 + Sk

K∑
i=k+1

PSi + σ2

)
. (28)

Since
∥∥zTk − zu

∥∥2
is convex with respect to zu, we have the

following inequality via the first order Taylor expansion at the
given point zru∥∥zTxk − zu∥∥2 ≥

∥∥zTxk − zru∥∥2

+ 2
(
zTxk − zru

)T
(zu − zru) .

(29)

By substituting (29) into (27), problem (19) is rewritten as
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max
zu,S

τS

(
K∑
k=1

R̃Slbk − R̂Sk

)
+ τD

K∑
k=1

RDk − qEtotal (30a)

s.t. R̃Slbk − log2

(
ρ0α

S
k |E(θ, φ)|2

H2 + Sk

K∑
i=k+1

PSi + σ2

)
≥ RSmin,∀k ∈ K,

(30b)

τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi ≥ EDk ,∀k ∈ K, (30c)

Sk ≤
∥∥zTxk − zru∥∥2

+ 2
(
zTxk − zru

)T
(zu − zru) . (30d)

Consequently, problem (30) is convex now, which can be
efficiently tackled using the standard convex optimization
methods [33].

B. Optimal Phased-Array Pattern
With the fixed (q, zu, P

S
k , α

S
k , P

D
k , τS , τD), the optimization

problem with respect to E(θ, φ) can be expressed as:

max
E(θ,φ)

λ
′

EE (31a)

s.t. RSk ≥ RSmin,∀k ∈ K, (31b)

EDk ≤ ESk ,∀k ∈ K. (31c)

From (3) and (12), the channel power gain gSk increases with
E(θ, φ), resulting in a significantly enhancement of the EE
and achievable transmission rate. Hence, problem (31) can be
rewritten as

max |E(θ, φ)|2. (32)

In this work, the M × N antenna array can be partitioned
into several sub-arrays, where the steerable beams formed by
the sub-arrays are assumed to be independent. Hence, problem
(32) can be reformulated as

max Ek(θ, φ). (33)

To form the directional beams, we control the side-lobe level
(SLL), array gain and beamwidth simultaneously through
optimizing the phase of antenna element. Mathematically, the
beam pattern multiobjective optimization problem (MOP) with
respect to phase z can be constructed as

minF (z) = (f1(z), f2(z), f3(z))
T

s.t. z ∈ RM×N ,
(34)

where f1(z) = SLL(z), f2(z) = 1
|E(θ,φ)| , f3(z) = 1

Θh,e
, z =

[z1n, · · · , zmn, · · · , zMN ]
T denote the phases of the M ×N

antenna array. SLL(z) = 20 log |Fsll|
|Fml| denotes the side-lobe

level of the antenna array, where Fsll and Fml represent the
array factor of the maximum SLL and main lobe, respectively.
E(θ, φ) = aH(θ, φ)ejz represents the synthesized pattern and
Θh,e denotes the elevation plane half-power beamwidth. To
tackle problem (34), we apply the MOEA/D solution [27].
The steps of the algorithm can be described as follows:
• Input: Let {N0, γ

i, S} be a set of input parameters. Here,
N0 is the number of subproblems. γi = (γi1, ..., γ

i
d)
T ,

i = 1, ..., N0, d represents the weight vector of the ith
subproblem. S denotes the number of weight vectors in
each neighborhood.

• Output: EP: a non-dominated solutions set.
• Initialization: For each i = 1, ..., N0, we select S as the

closest weight vectors of γi by calculating the Euclidean
distance, and store them in C(i). Then, we produce the
initial solutions z1, ...zN0

randomly, and update the F-
values FVi = F (zi). In addition, we initiate the best-
so-far solutions β = (β1, ..., βj , ..., βNd

)T , where βj =
min{fj(z), z ∈ RM×N}, and set EP to be empty.

• Update: For each i = 1, ..., N0, we choose weight
vectors zk, zl from C(i), and generate the new solution
x. Then, for j = 1, ..., d, if βj > fj(x), it follows
that βj = fj(x); If gte

(
x | γj , β

)
≤ gte

(
zj | γj , β

)
,

it follows that zj = x and FVj = F (x), where
gte
(
x | γj , β

)
= max1≤t≤d{γjt |ft(x)− βt|} [27]. Then,

we eliminate the vector dominated by F (x) from EP, if
no vectors dominate F (x), we add it to EP.

• Stopping: The iterations have converged.

C. Optimal PS Ratio and Power Allocation in SWIPT Phase

We optimize (PSk , α
S
k ) respectively with the fixed

(q, zu, E(θ, φ), PDk , τS , τD). The optimization problem is ex-
pressed as:

max
PS

k ,αk
S
λ
′

EE (35a)

s.t. RSk ≥ RSmin,∀k ∈ K, (35b)
K∑
k=1

PSk ≤ Pmax, (35c)

τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi ≥ EDk ,∀k ∈ K. (35d)

To tackle this problem, we first put forward the proposition
which demonstrates that the objective function (35a) is con-
cave in the transmit power and the PS ratio.

Proposition 2: The objective function is strictly concave
with respect to PSk and αSk ,∀k ∈ K.

Proof : See Appendix.
Note that the constraint (35b) can be converted as the

equivalent form

σ2 + αSk g
S
k

K∑
i=k

PSi − 2R
S
min

(
σ2 + αSk g

S
k

K∑
i=k+1

PSi

)
≥ 0.

(36)
Since constraint (36) is clearly linear, the optimization problem
(35) is convex with respect to PS and αS , and can be tackled
by the standard convex optimization approaches [33].

D. Power Allocation in D2D Phase

With the fixed (q, zu, E(θ, φ), PSk , α
S
k , τS , τD), the resulting

optimization problem with respect to PDk is expressed as

max
PD

k

λ
′

EE (37a)

s.t. RDk ≥ RDmin,∀k ∈ K, (37b)

τD

(
K∑
k=1

PDk + PDC

)
≤ ESk ,∀k ∈ K. (37c)
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Problem (37) is challenging to tackle due to the non-convex
function (37a) and constraint (37b). To tackle this problem,
we employ the successive convex optimization technique. In
particular, we first rewrite RDk as a difference of two concave
functions with respect to the power allocation, which is given
by

RDk = R̃Dk − R̂Dk , (38)

where

R̃Dk = log2

(
K∑
i=1

gDi,kP
D
i + σ2

)
, (39)

R̂Dk = log2

 K∑
i6=k

gDi,kP
D
i + σ2

 . (40)

Then, we let PDr be the rth iteration of PD. Using the first
order Taylor expansion, the upper bound of (40) is rewritten
as

R̂Dk = log2

 K∑
i6=k

gDi,kP
D
i + σ2


≤

K∑
i6=k

Cri,k(PDi − PDri ) + log2

 K∑
i6=k

gDi,kP
Dr
i + σ2


, R̂Dubk ,

(41)

where

Cri,k =
gDi,k log2(e)∑K

l 6=k g
D
l,kP

Dr
l + σ2

. (42)

By substituting (41) into problem (37), problem (37) is
represented as

max
PD

k

τS

K∑
k=1

RSk + τD

K∑
k=1

(
R̃Dk − R̂Dubk

)
− qEtotal (43a)

s.t. log2

(
K∑
i=1

gDi,kP
D
i + σ2

)
− R̂Dubk ≥ RDmin, (43b)

τD

(
K∑
k=1

PDk + PDC

)
≤ ESk ,∀k ∈ K. (43c)

Thus, problem (43) is convex, and can be tackled by the
standard convex optimization methods [33].

E. Time Scheduling

After solving the (q, zu, E(θ, φ), PSk , α
S
k , P

D
k ), problmen

(13) is simplified as

max
τS ,τD

a0τS + a1τD (44a)

s.t. a2τS ≤ a3τD, (44b)
τS + τD ≤ 1, (44c)
0 ≤ τS , τD ≤ 1, (44d)

TABLE I
THE JOINT UAV LOCATION AND RESOURCE

ALLOCATION ALGORITHM

1: Initialize Zn,En,PnS ,A
n
S ,P

n
D,T

n.
Calculate Qn = λnEE , and set iterate index n=1;

2: ITERATE
1) For given Qn,En,PnS ,A

n
S ,P

n
D,T

n,
solve problem (30) using the successive convex
optimization technique, and obtain the optimal Zn+1.
2) For given Qn,Zn+1,PnS ,A

n
S ,P

n
D,T

n,
solve problem (34) according to the MOEA/D-based
algorithm, and obtain the optimal En+1.
3) With the given Qn,Zn+1,En+1,PnD,T

n,
solve problem (35) according to Proposition 2,
and obtain the optimal Pn+1

S and An+1
S .

4) For given Qn,Zn+1,En+1,Pn+1
S ,An+1

S ,Tn,
solve problem (43) by applying the successive convex
optimization technique, and obtain the optimal Pn+1

D .
5) With the given Qn,Zn+1,En+1,Pn+1

S ,An+1
S ,Pn+1

D ,
solve problem (44) and obtain the optimal Tn+1.
Calculate Qn+1 = λn+1

EE , Update n = n + 1.
3: UNTIL convergence.

where

a0 =
K∑
k=1

RSk − q(Phov + ξ
K∑
k=1

PSk + PSC

−
K∑
k=1

η
(
1− αSk

)
gSk

K∑
i=1

P si ),

(45a)

a1 =
K∑
k=1

RDk − q

(
K∑
k=1

PDk + PDC

)
, (45b)

a2 =
K∑
k=1

PDk + PDC , (45c)

a3 =
(
1− αSk

)
ηgk

K∑
i=1

PSi . (45d)

Since problem (44) is linear with respect to the time
allocation, it can be tackled using similar approaches.

Based on the previous subsections, the complete iterative
algorithm for problem (13) is summarized in TABLE I.
To simplify the description, let Z = {zu}, E = {E(θ, φ)},
PS = {PSk ,∀k}, AS = {αSk ,∀k}, PD = {PDk ,∀k}, T =
{τS , τD}, Q = {q∗}. In each iteration, EE is maximized
over Z, while keeping (Q,E,PS,AS,PD,T)’s fixed. For a
given (Q,Z,PS,AS,PD,T), the set of E is obtained via
solving problem (34). Then, we fix the (Q,Z,E,PD,T) to
calculate (PS,AS) via solving problem (35) by the standard
convex optimization methods. In addition, with the fixed
(Q,Z,E,PS,AS,T), PD can be obtained by solving problem
(43). Finally, we can obtain T via tackling problem (44) and
calculating Q based on (17). The algorithm terminates until
convergence is reached.
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Fig. 2. The convergence behavior of the proposed joint UAV location and
resource allocation algorithm with different PS ratio schemes.

IV. NUMERICAL RESULTS

In this section, the simulation results are presented in order
to verify the superiority of the proposed algorithm. In our
simulations, the reference channel power gain at d0 = 1 m is
assumed to be ρ0 = −30 dB. The UAV is mounted with an 8
× 8 antenna array which is partitioned into several sub-arrays
according to the number of D2D pairs. The maximum transmit
power of UAV is set as Pmax = 20 W, and UAV is assumed
to fly at a fixed altitude H = 10 m with the hover power
Phov = 110 W [34]. In addition, the static circuit power at
the D2D-TX is set as PSC = 5 mW, and is set as PDC =
10 µW at the D2D-RX. The EH efficiency η is set to 0.1,
and the reciprocal of the power amplifier drain efficiency ζ
is set to 0.38. In order to satisfy the QoS requirements for
all the D2D-pairs, the minimum transmission rate constraint
of SWIPT phase and D2D phase is set to 2 bit/s/Hz and
1 bit/s/Hz respectively.

In the first simulation, we study the convergence behavior
of our proposed algorithm with different PS ratio strategies.
Specifically, we consider both the equal PS ratio case and
the independent PS ratio case with K = 4 D2D pairs. The
PS ratio of different D2D pairs are set as the same value in
the first case whilst the PS radio is optimized based on the
NOMA scheme in the other case. As is shown in Fig. 2, the
EE of the both two cases converge to a fixed value within
three iterations. In addition, the proposed joint UAV location
and resource allocation algorithm with independent PS ratio
can achieve higher EE, but it also cost higher computational
complexity.

In the next simulation, we investigate the EE of the con-
sidered D2D communications underlaying UAV-assisted IIoT
system versus the PS ratio. The number of D2D pairs is
set to K = 4 with equal PS ratio scheme. As shown in
Fig. 3, the relationship between the EE and the PS ratio
is quasiconcave. This demonstrates that there is a trade-off
between the PS scheme for EH and ID. In particular, a high
PS ratio reduces the energy harvested by D2D-TXs, which in
turn reduces the throughput in D2D phase. In contrast, a low
PS ratio may increase the energy harvested by D2D-TXs. In

Fig. 3. The energy efficiency of the D2D communications underlaying UAV-
assisted IIoT system versus the PS ratio.

Fig. 4. The energy efficiency of the D2D communications underlaying UAV-
assisted IIoT system versus the height of UAV.

order to satisfy the minimum transmission rate constraints in
the SWIPT phase, the UAV has to use a larger transmission
power, resulting in a decrease in the EE performance. In other
words, a suitable value of PS ratio can achieve a significant
improvement in EE performance.

Then, the EE performance of the proposed algorithm under
various constraints are presented in Fig. 4, Fig. 5, Fig. 6
and Fig. 7. The number of D2D pairs is set to 2, 4 and
6 respectively. Firstly, the EE of the D2D communications
underlaying UAV-assisted IIoT system versus the height of
UAV is evaluated under different number of D2D pairs. In
particular, we set the height of UAV within the range of 3 m
to 30 m. As it can be shown in Fig. 4, the EE achieved by our
proposed algorithm decreases monotonically with the height
of UAV. Furthermore, in the case of K = 6 D2D pairs, the EE
decreases rapidly when the height of UAV reaches at 21 m.
This is due to the fact that increasing the UAV’s height will
increase the path loss, and hence restricts the improvement
of the EE performance. In addition, the EE is non-decreasing
with the number of D2D pairs. This is due to the fact that
a larger number of D2D pairs is capable of enhancing the
diversity gain. Therefore, a suitable number of D2D pairs can
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Fig. 5. The energy efficiency of the D2D communications underlaying UAV-
assisted IIoT system versus the hover power of UAV.

Fig. 6. The energy efficiency of the D2D communications underlaying UAV-
assisted IIoT system versus minimum rate constraint.

achieve a better EE performance.
We next investigate the EE of the D2D communications

underlaying UAV-assisted IIoT system versus the hover power
of UAV under different number of D2D pairs. The hover
power of UAV is set within the range of 80 W to 140 W.
As shown in Fig. 5, the EE achieved by our proposed method
is monotonically non-increasing with the increasing of the
hover power of UAV. This is because that increasing the hover
power of UAV will increase the total energy consumption
of the system, and thus restrict the improvement of the
EE. Similarly, the proposed joint UAV location and resource
allocation algorithm with large number of D2D pairs achieves
a higher EE performance.

In the next simulations, we study the EE of the D2D
communications underlaying UAV-assisted IIoT system versus
minimum rate constraint under different number of D2D pairs.
The minimum rate constraints in SWIPT phase and D2D phase
set as the same value within the ranger of 0.6 bit/s/Hz to
2.6 bit/s/Hz. As it can be seen in Fig.6, the EE is the same
under a certain minimum rate constraint Rmin, 0.6 ≤ Rmin ≤
2.4 bit/s/Hz, but drops after when K = 6. The reason is that
the proposed joint UAV location and resource allocation algo-

Fig. 7. The energy efficiency of IIoT devices versus the distance between
each D2D pair.

Fig. 8. The energy efficiency of all IIoT devices versus the power budget
under different resource allocation schemes.

rithm can guarantee the QoS requirements sufficiently when
the minimum transmission rate constraints are sufficiently
small. However, when Rmin ≥ 2.4 bit/s/Hz, the EE decreases
in the case of K = 6 D2D pairs. This is because more
transmit power is needed to satisfy the increasing minimum
rate constrains ,resulting in a reduction of energy harvested
by D2D-TX, and thus limits the improvement of the system
throughput. This results in a decrease in EE performance.

We then study the EE of the D2D communications under-
laying UAV-assisted IIoT system versus the distance between
each D2D pair. In particular, we set the distance between each
D2D pair within the range of 2 m to 14 m. As shown in Fig.7,
the EE is non-increasing with the distance between each D2D
pair. In particular, when the distance of D2D pairs is small,
the interference received by D2D-RX from other D2D pairs is
sufficiently low compared to the signal received by its D2D-
TX, thus the achievable EE is high. In contrast, as the distance
of D2D pairs increases, the power consumption become larger
and the achievable rate become lower, which decrease the EE.

In the last simulation, we study the EE of the D2D com-
munications underlaying UAV-assisted IIoT system versus the
power budget under different resource allocation schemes. To
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show the EE performance of our proposed algorithm, we
compare with the “power control algorithm” in the UAV-
assisted D2D networks [25] and the “joint optimization”
algorithm in the UAV-enabled IoT networks [35]. We assume
that there are K = 4 D2D pairs and the minimum rate
constraints is 1 bit/s/Hz. As it can be seen in Fig. 8, the
EE obtained by our proposed algorithm outperforms both the
other two algorithms. This is due to the fact that we apply the
beamforming technique to improve the channel power gain,
and therefore enhances the system performance. In particular,
our proposed algorithm enables the UAV-mounted antenna
array to form the directional beams which can compensate
the high propagation loss. Furthermore, our algorithm adopts
NOMA to enable the UAV to communicate with multiple
D2D-TXs simultaneously, which further increases the EE of
the network.

V. CONCLUSION

In this paper, we propose a joint UAV location and resource
allocation algorithm for the D2D communications underlaying
UAV-assisted industrial IoT network. In particular, in the
SWIPT phase, the UAV serves as a flying BS to transmit
energy and information to D2D-TXs. Then in the D2D phase,
D2D-TXs transmit information to D2D-RXs using the har-
vested energy. Our aim is to maximize the EE of the network
while satisfying the constraints of minimum transmission
rate and the power budget. The formulated EE maximization
problem involves joint optimization of the UAV location, beam
pattern design, power allocation and time scheduling, which is
non-convex and challenging to solve. To solve this problem,
by applying the Dinkelbach method, the successive convex
optimization techniques and the MOEA/D algorithm, we pro-
pose a iterative resource allocation algorithm to optimize the
variables sequentially. Numerical results illustrate that the EE
obtained by the proposed algorithm outperform the existing
works.

APPENDIX

Firstly, we prove that the objective function (35a) is concave
in the transmit power of the UAV. To simplify the description,
we let βk =

∑K
i=k P

S
i , αS = α, gS = g. The objective

function can be reformulated as

ΛEE(P )

=
K∑
k=1

log2

(
σ2 + αkgkβk
σ2 + αkgkβk+1

)

− q

(
ζβ1 + PSC − η

K∑
k=1

(1− αk) gkβ1

)

=
K∑
k=2

(
log2

(
σ2 + αkgkβk

)
− log2

(
σ2 + αk−1gk−1βk

))
− q

(
ζβ1 + PC − η

K∑
k=1

(1− αk) gkβ1

)
− log2

(
σ2
)

+ log2

(
σ2 + α1g1β1

)
.

(46)

Then the first-order derivative of ΛEE(P ) can be expressed
as
∂ΛEE(P )

∂Pm

=
1

ln 2
·

(
α1g1

σ2 + α1g1β1
+

m∑
k=2

(
αkgk

σ2 + αkgkβk

− αk−1gk−1

σ2 + αk−1gk−1βk

))
− q

(
ζ − η

K∑
k=1

(1− αk) gk

)
.

(47)
Furthermore, the second-order derivative of ΛEE(P ) is de-
noted as
∂2ΛEE(P )

∂Pm∂Pl

= − 1

ln 2
·
j∑

k=2

(
α2
kg

2
k

(σ2 + αkgkβk)
2 −

α2
k−1g

2
k−1

(σ2 + αk−1gk−1βk)
2

)

− 1

ln 2
· α2

1g
2
1

(σ2 + α1g1β1)
2 ,

(48)
Let Hm = ∂2ΛEE(P )

∂P 2
m

. According to (48), it is obvious that
∂2ΛEE(P )
∂Pm∂Pl

= Hm when l ≥ m, and ∂2ΛEE(P )
∂Pm∂Pl

= Hl when
l ≤ m. Then, the Hessian matrix can be expressed as

H =


H1 H1 · · · H1

H1 H2 · · · H2

...
...

...
H1 H2 · · · HK

 . (49)

Then, we define the matrix Q = −H, in which the k-th order
principal minor can be formulated as

Qk =

∣∣∣∣∣∣∣∣∣
−H1 −H1 · · · −H1

−H1 −H2 · · · −H2

...
...

...
−H1 −H2 · · · −Hk

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
−H1 −H1 · · · −H1

0 H1 −H2 · · · H1 −H2

...
...

...
0 0 · · · Hk−1 −Hk

∣∣∣∣∣∣∣∣∣
=

{
−H1, k = 1

−H1

∏k
i=2 (Hi−1 −Hi) , 2 ≤ k ≤ K.

(50)

Since −H1 = − 1
ln 2 ·

α2
1g

2
1

(σ2+α1g1β1)2
≥ 0, and for 2 ≤ i ≤ K,

Hi−1 −Hi =
1

ln 2
·

(
α2
i g

2
i

(σ2 + giβi)
2 −

α2
i−1g

2
i−1

(σ2 + gi−1βi)
2

)

=
1

ln 2
·

 1(
σ2

αigi
+ βi

)2 −
1(

σ2

αi−1gi−1
+ βi

)2


> 0.

(51)
We have proved that Qk ≥ 0, and thus Q = −H � 0 and
H � 0. Therefore, the objective function is concave in P .
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Next, we prove that the objective function (35a) is concave in
the PS ratio. The first-order derivative of ΛEE(α) is given by

∂ΛEE(α)

∂αm

=
1

ln 2
·

(
β1g1

σ2 + α1g1β1
+

m∑
k=2

(
βkgk

σ2 + αkgkβk

− βk−1gk−1

σ2 + αk−1gk−1βk

))
− q

(
ζ − η

K∑
k=1

(1− αk) gk

)
.

(52)
The second-order derivative of ΛEE(α) can be denoted as

∂2ΛEE(α)

∂αm∂αl

= − 1

ln 2
·
j∑

k=2

(
β2
kg

2
k

(σ2 + αkgkβk)
2 −

β2
k−1g

2
k−1

(σ2 + αk−1gk−1βk)
2

)

− 1

ln 2
· β2

1g
2
1

(σ2 + α1g1β1)
2 .

(53)
Let Hm = ∂2ΛEE(α)

∂α2
m

, according to (53), the Hessian matrix
is expressed as

H =


H1 H1 · · · H1

H1 H2 · · · H2

...
...

...
H1 H2 · · · HK

 . (54)

Then, we define the matrix Q = −H, and the k-th order
principal minor can be formulated as

Qk =

∣∣∣∣∣∣∣∣∣
−H1 −H1 · · · −H1

−H1 −H2 · · · −H2

...
...

...
−H1 −H2 · · · −Hk

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
−H1 −H1 · · · −H1

0 H1 −H2 · · · H1 −H2

...
...

...
0 0 · · · Hk−1 −Hk

∣∣∣∣∣∣∣∣∣
=

{
−H1, k = 1

−H1

∏k
i=2 (Hi−1 −Hi) , 2 ≤ k ≤ K.

(55)

Note that −H1 = − 1
ln 2 ·

β2
1g

2
1

(σ2+α1g1β1)2
≥ 0, and for 2 ≤ i ≤ K,

Hi−1 −Hi =
1

ln 2
·

(
g2
i β

2
i

(σ2 + giβi)
2 −

g2
i−1β

2
i

(σ2 + gi−1βi)
2

)

=
1

ln 2
·

 β2
i(

σ2

gi
+ βi

)2 −
β2
i(

σ2

gi−1
+ βi

)2


> 0,

(56)
which implies that Q = −H � 0 and H � 0, we can conclude
that the objective function is concave in α.
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