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Abstract—This paper investigates the energy efficiency (EE)
optimization problem for device-to-device (D2D) communications
underlaying non-orthogonal multiple access (NOMA) in unmanned
aerial vehicles (UAVs)-assisted networks with simultaneous wireless
information and power transfer (SWIPT). Our aim is to maximize
the energy efficiency of the system while satisfying the constraints
of transmission rate and transmission power budget. However,
the considered EE optimization problem is non-convex involving
joint optimization of the UAV’s location, beam pattern, power
control and time scheduling, which is difficult to solve directly.
To tackle this problem, we develop an efficient resource allocation
algorithm to decompose the original problem into several sub-
problems and solve them sequentially. Specifically, we first apply
the Dinkelbach method to transform the fraction problem to a
subtractive-form one, and propose a mulitiobjective evolutionary
algorithm based on decomposition (MOEA/D) based algorithm
to optimize the beam pattern. We then optimize UAV’s location
and power control by applying the successive convex optimization
techniques. Finally, after solving the above variables, the original
problem is transformed into a single-variable problem with respect
to the charging time, which is a linear problem and can be tackled
directly. Numerical results verify that the significant EE gain can be
obtained by our proposed method as compared to the benchmark
schemes.

Index Terms—Energy efficiency (EE), unmanned aerial vehicle
(UAV), device-to-device (D2D) communications, resource allocation

I. INTRODUCTION

Massive Machine-Type communications (mMTC) is the im-
portant scenario in the fifth generation (5G) mobile networks,
this scenario is capable of supporting massive connections of
Internet of Things (IoT) devices [1]. As a result, a massive num-
ber of connected IoT devices will cause the explosive growth
of data traffic in IoT networks, resulting in enormous power
consumption [2]. Thus, how to improve the energy efficiency
(EE) of communication systems is still an open problem in the
future wireless networks.

Simultaneous Wireless Information and Power Transfer
(SWIPT) has been viewed as a promising technique for enhanc-
ing the energy efficiency of the systems [3], which achieves
the information and energy to be simultaneously transmitted.
In addition, Device-to-Device (D2D) is also one of the key
technologies in the 5G mobile networks. It has been confirmed
that combing SWIPT and D2D can further improve the energy
efficiency [4]. However, when IoT devices are deployed in
remote areas or disaster areas, it is not efficient for them to es-
tablish communication links with traditional base stations (BSs)
due to long-distance transmission. Owning to the advantages

Fig. 1: Illustration of a UAV-assisted D2D communication
network with SWIPT.

of great maneuverability, wide coverage, and high flexibility,
unmanned aerial vehicles (UAVs) have been widely deployed
in geographically constrained areas to provide wireless services
for users. Therefore, UAVs can act as the air BSs to provide
efficient information and energy transmission services for users,
and thus have been widely used in many scenarios including
non-orthogonal multiple access (NOMA) networks [5], multiple
input multiple output (MIMO) systems [6] and SWIPT networks
[7].

In this paper, our aim is to maximize the EE of the UAV-
assisted D2D communication network whilst satisfying the
constraints of the minimum required data rate and transmission
power budget. To tackle the considered problem, we develop a
multi-variable optimization algorithm, where all the variables
are optimized in an alternative manner. First, we apply the
Dinkelbach method to transform the fraction problem into a
subtractive-form one. Then, we optimize the optimal UAV
placement and transmit power in D2D phase by applying
the successive convex optimization techniques. In addition,
we adopt the multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [8] to control the beam pattern. Fur-
thermore, we have proved that the corresponding sub-problem
that optimizes the power allocation in SWIPT phase and time
scheduling is convex which can be tackled by the standard
convex optimization methods. Numerical results verify that
significant computation performance gain can be obtained by
our proposed algorithm compared with the benchmark schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As seen in Fig. 1, we consider the D2D communications
in UAV-assisted network with SWIPT. The UAV is equipped



with multiple antennas, and K ≥ 2 D2D pairs is equipped
with one single antenna due to the limitations of the hard-
ware size and battery power. Each D2D transmitter (D2D-TX)
k ∈ K has a fixed location on the ground which is denoted as
zTk =

(
xTk , y

T
k

)
, and the kth D2D receiver (D2D-RX) is denoted

as zRk =
(
xRk , y

R
k

)
. The horizontal location of UAV is denoted

as zu = (xu, yu), and the UAV is set to work at a fixed altitude
H. The whole period T contains two phases. In the SWIPT
phase with duration τST (0 ≤ τS ≤ 1), the UAV transmits
information and power to D2D-TXs. In the D2D phase with
duration τDT (τD+τS ≤ 1), the D2D-TXs transmit information
to D2D-RXs by the harvested energy in order to further improve
the throughput of the network. In this work we set the period
T = 1 for simplicity.

Sepcifically, in the SWIPT phase, UAV serves as a flying BS
to transmit power and information to D2D-TX using NOMA.
Since the UAV base station has the advantage of mobile flex-
ibility, we assume that the communication links between the
UAV and each D2D-TX is the line-of-sight (LOS) link. Thus,
the channel gain between the UAV and the kth D2D-TX is
expressed as [9]

hk =
√
ρ0d
−2
k a(θ, φ), (1)

where ρ0 is the channel power gain at a reference distance of
d0 = 1 m. The distance between the UAV and kth D2D-TX is
dk =

√(
xTk − xu

)2
+
(
yTk − yu

)2
+H2, and a(θ, φ) denotes

the steering vector, which is given by

a(θ, φ) =
[
1, · · · , ej2π/λd sin(θ)[(j−1) sin(φ)+(i−1) cos(φ)],

· · · , ej2π/λd sin(θ)[(N−1) sin(φ)+(M−1) cos(φ)]
]T
,

(2)

where θ is the elevation angle and φ is the azimuth angle of the
LOS path. λ is the wavelength and d is the spacing between
antenna elements. i and j denote the coordinate of antenna
elements. The channel power gain from the UAV to the kth
D2D-TX is formulated as∣∣hHk w

∣∣2 =
ρ0

∣∣aH(θ, φ)w
∣∣2(

xTk − xu
)2

+
(
yTk − yu

)2
+H2

, (3)

where w denotes the beamforming vector. E(θ, φ) = aH(θ, φ)w

is the synthesized pattern of the antenna array, let gSk =
∣∣hHk w

∣∣2.
Each D2D-TX consists of the information decoding (ID)

circuit and the energy harvesting (EH) rectification circuit.
Power splitting (PS) scheme is adopted to split the signal into
two parts, one of which is exploited for energy harvesting whilst
the other is used to decode the information. The transmission
power of UAV is limited to Pmax, and the power allocated to the
kth D2D-TX is assumed to be PSk . The PS ratio αSk denotes the
fraction of transmission power allocated to kth D2D-TX for ID,
and 1− αSk for EH. Thus, the signal received by kth D2D-TX
for ID is expressed as

yIDk =
√
αSk g

S
k

K∑
i=1

√
PSi si +N0, (4)

where si denotes the signal from UAV to the ith D2D-TX, and
N0 is the additive Gaussian white noise (AWGN) with power
σ2. With successive interference cancellation (SIC) operation,

the kth D2D-TX will detect the jth D2D-TX’s information,
j < k, and remove the information from its observation. The
message for jth D2D-TX, j > k, will be treated as noise at the
kth D2D-TX. Thus, the achievable transmission rate for D2D-
TX k is given by

RSk = log2

(
1 +

αSk g
S
kP

S
k

σ2 + αSk g
S
k

∑K
i=k+1 P

S
i

)
. (5)

The signal received by kth D2D-TX for EH is expressed as

yEHk =
√

1− αSk g
S
k

K∑
i=1

√
PSi si +N0, (6)

Then, the harvested energy at the kth D2D-TX is expressed
as

ESk = τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi , (7)

where η denotes the energy conversion efficiency. Thus, the total
energy consumption of the SWIPT phase is expressed as

EStotal = τS

(
ζ

K∑
k=1

PSk + PSC + Phov

)
−

K∑
k=1

ESk , (8)

where ζ denotes the drain efficiency of the power amplifier, PSC
is the energy consumed by the hardware of the SWIPT phase,
and Phov denotes the power consumed by the UAV during
hovering.

In the D2D phase, we assume that the communication links
between the D2D-TX and D2D-RX is the LOS links due to the
advantage of D2D links. Thus, the channel power gain from the
mth D2D-TX to the kth D2D-RX is expressed as

gDm,k =
ρ0(

xTm − xRk
)2

+
(
yTm − yRk

)2 . (9)

The transmission power of the kth D2D-TX is assumed to be
PDk . Thus, the achievable transmission rate of the kth D2D-RX
can be given by

RDk = log2

(
1 +

gDk,kP
D
k

σ2 +
∑k
i=1,i6=k g

D
i,kP

D
i

)
. (10)

In addition, the total energy consumption in the D2D phase can
be expressed as

EDtotal =

K∑
k=1

EDk = τD(

K∑
k=1

PDk + PDC ), (11)

where PDC denotes the energy consumed by the hardware during
the D2D phase. Therefore, the EE of the considered network can
be formulated as

λEE =
TRtotal
Etotal

=
τS
∑K
k=1R

S
k + τD

∑K
k=1R

D
k

EStotal + EDtotal
. (12)

B. Problem Formulation

We aim to maximize the energy efficiency of the network
while satisfying the constraints of minimum transmission rate
and total transmission power of UAV. Mathematically, the
optimization problem is expressed as

max
E(θ,φ),PS,D

k ,zu,αS
k ,τS,D

λEE (13a)



s.t. RSk ≥ RSmin,∀k ∈ K, (13b)

RDk ≥ RDmin,∀k ∈ K, (13c)

K∑
k=1

PSk ≤ Pmax, (13d)

EDk ≤ ESk ,∀k ∈ K, (13e)

τS + τD ≤ 1, (13f)

0 ≤ τS , τD ≤ 1, (13g)

0 ≤ αSk ≤ 1. (13h)

Constraints (13b), (13c) indicate the achievable rate in the
SWIPT phase and the D2D phase should satisfy the minimum
transmission rate constraint RSmin and RDmin respectively to
guarantee the quality of service (QoS) of the devices. Constraint
(13d) indicates that the transmission power of UAV should
satisfy the maximize power budget Pmax. Constraint (13e)
guarantees that the energy consumed by each D2D-TX cannot
exceed its harvested energy from the UAV. Constraints (13f) and
(13g) limit the time switching ratio for SWIPT phase and D2D
phase, and constraint (13h) limits the power splitting ratio for
ID and EH. Problem (13) is a non-convex problem due to the
coupling variables, which is challenging to solve. To tackle this
problem, we develop an efficient resource allocation algorithm
by optimizing the above variables sequentially.

III. THE ITERATIVE RESOURCE ALLOCATION
ALGORITHM

In this section, we develop an efficient iterative algorithm,
which decouples the problem into several sub-problems, and
tackle them sequentially.

We first apply the Dinkelbach method [10] to transform
the fraction problem to a subtractive-form one. Denote q∗ as
the optimal solution of the considered problem (13), which is
expressed as

q∗ = max
E(θ,φ),PS,D

k ,zu,αS
k ,τS,D

τS
∑K
k=1R

S
k + τD

∑K
k=1R

D
k

EStotal + EDtotal
.

(14)
With the given q, the equivalent optimization problem is given
by

max
E(θ,φ),PS,D

k ,zu,αS
k ,τS,D

λ
′

EE

=τS

K∑
k=1

RSk + τD

K∑
k=1

RDk − q
(
EStotal + EDtotal

)
.

(15)

A. Location Optimization

With the fixed beam pattern, power allocation, PS ratio and
time scheduling factor, the original problem can be regarded as

the UAV location optimization problem. This problem can be
reformulated as:
max
zu

λ
′

EE (16a)

s.t. log2

(
1 +

αSk g
S
kP

S
k

σ2 + αSk g
S
k

∑K
i=k+1 P

S
i

)
≥ RSmin,∀k ∈ K,

(16b)

τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi ≥ EDk ,∀k ∈ K. (16c)

The constraints (16b) is non-convex with respect to zu. By
applying the successive convex optimization approach, RSk is
reformulated as

RSk = R̃Sk − R̂Sk , (17)
where

R̃Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTk − zu∥∥2

K∑
i=1

PSi + σ2

)
, (18)

R̂Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTk − zu∥∥2

K∑
i=k+1

PSi + σ2

)
. (19)

Noted that R̃Sk is neither concave nor convex with respect to zu.
We define the local point zru as the given location of UAV in

the rth iteration. Then, we obtain the globally lower bound of
(18) by applying the first order Taylor expansion [11], which is
expressed as

R̃Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTk − zu∥∥2

K∑
i=1

PSi + σ2

)

≥
k∑
i=1

−Ark(
∥∥zTk − zu∥∥2 −

∥∥zTk − zru∥∥2
)

+Brk , R̃Slbk ,

(20)

where Ark and Brk can be calculated as

Ark =

PS
i ρ0α

S
k |E(θ,φ)|2(

H2+‖zT
k−zr

u‖2
)2 log2(e)

ρ0αS
k |E(θ,φ)|2

H2+‖zT
k−zr

u‖2
∑k
l=1 P

S
l + σ2

, (21)

Brk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 +
∥∥zTk − zru

∥∥2

k∑
l=1

PSl + σ2

)
. (22)

With (17) and (20), (16b) can be reformulated as
R̃Slbk − R̂Sk ≥ RSmin. (23)

However, (23) is still non-convex due to R̂Sk . Thus, we introduce
the slack variable S =

{
Sk =

∥∥zTk − zu
∥∥2
,∀k
}

, which should
satisfy the following constraints

Sk ≤
∥∥zTk − zu

∥∥2
,∀k (24)

Then, R̂Sk can be reformulated as

R̂Sk = log2

(
ρ0α

S
k |E(θ, φ)|2

H2 + Sk

K∑
i=k+1

PSi + σ2

)
. (25)

Since
∥∥zTk − zu

∥∥2
is convex with respect to zu, we have the

following inequality via Taylor expansion at the given point
zru∥∥zTk − zu∥∥2 ≥

∥∥ZTk − zru∥∥2
+ 2

(
zTk − zru

)T
(zu − zru) . (26)



By substituting (26), problem (16) is approximated as the
following problem

max
zu,S

τS

(
K∑
k=1

R̃Slbk − R̂Sk

)
+ τD

K∑
k=1

RDk − qEtotal (27a)

s.t. R̃Slbk − log2

(
ρ0α

S
k |E(θ, φ)|2

H2 + Sk

K∑
i=k+1

PSi + σ2

)
≥ RSmin,∀k ∈ K,

(27b)

τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi ≥ EDk ,∀k ∈ K, (27c)

Sk ≤
∥∥ZTk − zru∥∥2

+ 2
(
zTk − zru

)T
(zu − zru) . (27d)

As a result, problem (27) is convex now, and can be efficiently
tackled by the standard convex optimization methods.

B. Optimal Phased-Array Pattern

With the fixed UAV location, power allocation, PS ratio and
time scheduling, the optimization problem with respect to the
beam pattern can be expressed as:

max
E(θ,φ)

λ
′

EE (28a)

s.t. RSk ≥ RSmin,∀k ∈ K, (28b)

EDk ≤ ESk ,∀k ∈ K. (28c)

From (3) and (12), the channel power gain gSk increases with
E(θ, φ). As a result, the channel power gain increases, results
in a significantly enhancement of the EE and achievable trans-
mission rate. Hence, problem (28) can be rewritten as

max |E(θ, φ)|2. (29)

The M×N antenna array can be divided into several sub-arrays,
we assumed that the steerable beams formed by the sub-arrays
are independent. Then, problem (29) can be reformulated as

max Ek(θ, φ). (30)

To form the directional beams, we control the side-lobe level
(SLL), array gain and beamwidth simultaneously through opti-
mizing the phase of antenna element. Mathematically, the beam
pattern multiobjective optimization problem (MOP) with respect
to phase z can be constructed as

minF (z) = (f1(z), f2(z), f3(z))
T

s.t. z ∈ RM×N ,
(31)

where f1(z) = SLL(z), f2(z) = 1
|E(θ,φ)| , f3(z) = 1

Θh,e
,

z = [z1n, · · · , zmn, · · · , zMN ]
T denotes the phases of the

M×N antenna array. SLL(z) = 20 log |Fsll|
|Fml| denotes the side-

lobe level of the antenna array, where Fsll and Fml represent the
array factor of the maximum SLL and main lobe, respectively.
E(θ, φ) = aH(θ, φ)ejz represents the synthesized pattern and
Θh,e denotes the elevation plane half-power beamwidth. To
tackle problem (31), we apply the MOEA/D solution [8]. Here,
the steps of the algorithm can be described as follows:
• Input: Let {N0, γ

i, S} be a set of input parameters. Here,
N0 is the number of subproblems. γi = (γi1, ..., γ

i
d)
T ,

i = 1, ..., N0, d represents the weight vector of the ith

subproblem. S denotes the number of weight vectors in
each neighborhood.

• Output: EP: a non-dominated solutions set.
• Initialization: For each i = 1, ..., N0, we select S as the

closest weight vectors of γi by calculating the Euclidean
distance, and store them in C(i). Then, we produce the
initial solutions z1, ...zN0

randomly, and update the F-
values FVi = F (zi). In addition, we initiate the best-
so-far solutions β = (β1, ..., βj , ..., βNd

)T , where βj =
min{fj(z), z ∈ RM×N}, and set EP to be empty.

• Update: For each i = 1, ..., N0, we choose weight vec-
tors zk, zl from C(i), and generate the new solution x.
Then, for j = 1, ..., d, if βj > fj(x), it follows that
βj = fj(x); If gte

(
x | γj , β

)
≤ gte

(
zj | γj , β

)
, it follows

that zj = x and FVj = F (x), where gte
(
x | γj , β

)
=

max1≤t≤d{γjt |ft(x)− βt|} [8]. Then, we remove all vec-
tor dominated by F (x) from EP, if no vectors dominate
F (x), we add it to EP.

• Stopping: The iterations have converged.

C. Optimal PS Ratio and Power Allocation in SWIPT Phase

We optimize the PS ratio and power allocation in SWIPT
phase respectively with the fixed UAV location, beam pattern,
power allocation in D2D phase and time scheduling. The
optimization problem is expressed as:

max
PS

k ,αk
S
λ

′

EE (32a)

s.t. RSk ≥ RSmin,∀k ∈ K, (32b)
K∑
k=1

PSk ≤ Pmax, (32c)

τS
(
1− αSk

)
ηgSk

K∑
i=1

PSi ≥ EDk ,∀k ∈ K. (32d)

The objective function is strictly concave with respect to PSk
and αSk ,∀k ∈ K. Note that the constraint (32b) can be rewritten
as

σ2+αSk g
S
k

K∑
i=k

PSi −2R
S
min

(
σ2 + αSk g

S
k

K∑
i=k+1

PSi

)
≥ 0. (33)

Constraint (33) is claerly linear. Thus, the optimization problem
(32) is convex with respect to PS and αS , and can be tackled
by the standard convex optimization approaches.

D. Power Allocation in D2D Phase

With the fixed UAV location, beam pattern, power allocation
in SWIPT phase and time scheduling, we discuss the power
allocation in D2D phase. The resulting optimization problem is
expressed as

max
PD

k

λ
′

EE (34a)

s.t. RDk ≥ RDmin,∀k ∈ K, (34b)

τD

(
K∑
k=1

PDk + PDC

)
≤ ESk ,∀k ∈ K. (34c)

Problem (34) is challenging to solve due to the non-convex
function (34a) and constraint (34b). To tackle this problem,



we apply the successive convex optimization technique. In
particular, we first rewrite RDk as

RDk = R̃Dk − R̂Dk , (35)

where

R̃Dk = log2

(
K∑
i=1

gDi,kP
D
i + σ2

)
, (36)

R̂Dk = log2

 K∑
i 6=k

gDi,kP
D
i + σ2

 . (37)

Let PDr be the rth iteration of PD. By applying the Taylor
expansion, the upper bound of (37) is rewritten as

R̂Dk = log2

 K∑
i 6=k

gDi,kP
D
i + σ2


≤

K∑
i6=k

Cri,k(PDi − PDri ) + log2

 K∑
i 6=k

gDi,kP
Dr
i + σ2


, R̂Dubk ,

(38)
where

Cri,k =
gDi,k log2(e)∑K

l 6=k g
D
l,kP

Dr
l + σ2

. (39)

By substituting (38) into problem (34), problem (34) is repre-
sented as

max
PD

k

τS

K∑
k=1

RSk + τD

K∑
k=1

(
R̃Dk − R̂Dubk

)
− qEtotal (40a)

s.t. log2

(
K∑
i=1

gDi,kP
D
i + σ2

)
− R̂Dubk ≥ RDmin, (40b)

τD

(
K∑
k=1

PDk + PDC

)
≤ ESk ,∀k ∈ K. (40c)

Thus, problem (40) is convex now, which can be tackled by the
standard convex optimization methods.

E. Time Scheduling

With the fixed UAV location, power allocation, beam pattern
and PS ratio, problmen (13) is simplified as

max
τS ,τD

a0τS + a1τD (41a)

s.t. a2τS ≤ a3τD, (41b)
τS + τD ≤ 1, (41c)
0 ≤ τS , τD ≤ 1, (41d)

where a0 = −q(ξ
∑K
k=1 P

S
k −

∑K
k=1 η

(
1− αSk

)
gSk
∑K
i=1 P

s
i +

PUAV + PSC ) +
∑K
k=1R

S
k , a1 = −q(

∑K
k=1 P

D
k + PDC ) +∑K

k=1R
D
k , a2 = PDC +

∑K
k=1 P

D
k , a3 = (1−αSk )ηgk

∑K
i=1 P

S
i .

Since problem (41) is clearly linear, it can be tackled directly.
Based on the previous subsections, the complete iterative

algorithm for problem (13) is summarized in TABLE I. To
simplify the description, let Z = {zu}, E = {E(θ, φ)}, PS =
{PSk ,∀k}, AS = {αSk ,∀k}, PD = {PDk ,∀k}, T = {τS , τD}.

TABLE I
THE RESOURCE ALLOCATION ALGORITHM

1: Initialize Zn,En,Pn
S ,A

n
S ,P

n
D ,T

n.
Calculate Qn = λnEE , and set iterate index n=1;

2: ITERATE
For given Qn,En,Pn

S ,A
n
S ,P

n
D ,T

n,
solve problem (27) and obtain optimal Zn+1.
For given Qn,Zn+1,Pn

S ,A
n
S ,P

n
D ,T

n,
solve problem (32) and obtain optimal En+1.
For given Qn,Zn+1,En+1,An

S ,P
n
D ,T

n,
solve problem (33) and obtain optimal Pn+1

S .
For given Qn,Zn+1,En+1,Pn+1

S ,Pn
D ,T

n,
solve problem (35) and obtain optimal An+1

S .
For given Qn,Zn+1,En+1,Pn+1

S ,An+1
S ,Tn,

solve problem (43) and obtain optimal Pn+1
D .

For given Qn,Zn+1,En+1,Pn+1
S ,An+1

S ,Pn+1
D ,

solve problem (44) and obtain optimal Tn+1.
Calculate Qn+1 = λn+1

EE , Update n = n + 1.
3: UNTIL converge.

IV. NUMERICAL RESULTS

In this section, we provide the numerical results to demon-
strate the superiority of the proposed algorithm. It is assumed
that the UAV-assisted D2D communication network has K = 4
D2D pairs. Other parameters are as follows: σ2 = −110 dBm,
ρ0 = −40 dB, H = 20 m, Phov = 110 W, PSC = 5 mW,
PDC = 10 µW, η = 0.6, ζ = 0.1, RSmin = 2 bit/s/Hz,
RDmin = 1 bit/s/Hz, Pmax = 5 W.

In the first simulation, we study the convergence of our
proposed algorithm with different PS ratio strategy. In Fig. 2,
the EE of the both two cases converge to a fixed value within
three iterations. In addition, the independent PS ratio case can
achieve higher EE, but cost higher computational complexity.

In the next simulation, the relationship between the EE and
the PS ratio is studied. This case involves K = 4 D2D
pairs with equal PS ratio scheme. As shown in Fig. 3, the
relationship between the EE and the PS ratio is quasiconcave.
This demonstrates that there is a trade-off between the PS
scheme for EH and ID. In particular, a high PS ratio reduces
the energy harvested by D2D-TXs, which in turn reduces the
throughput in D2D phase. In contrast, a low PS ratio may
increase the energy harvested by D2D-TXs. However, in order to
satisfy the minimum transmission rate constraints in the SWIPT
phase, the UAV has to use a larger transmission power, resulting
in a decrease in the EE performance. In other words, a suitable
value of PS ratio can increase the overall EE performance.

Furthermore, the performance of our proposed algorithm is
evaluated under various height of UAV and different number
of D2D pairs. We set the number of D2D pairs to 2, 4 and 6
respectively. As it can be seen from Fig. 4, the EE achieved by
our proposed algorithm is decreasing with the height of UAV.
In addition, the EE is non-decreasing with the number of D2D
pairs. With larger number of D2D pairs, greater diversity gain
can be offered. In particular, when the height of UAV increases,
the EE decreases rapidly due to the limited transmission power
and the minimum rate requirement.

In the last simulation, we study the relationship between
the EE and Pmax. To show the computation performance, we
compare with algorithm 1 in [12] and algorithm 2 in [13]. In
Fig. 5, the EE achieved by our proposed algorithm outperforms



Fig. 2: Convergence performance of the proposed algorithm with
different PS ratio scheme.

Fig. 3: The performance of the proposed algorithm versus equal
PS ratio.

both algorithm 1 and algorithm 2. This is because algorithm 1
use a single antenna which causes the poor channel conditions.
In algorithm 2, the sum throughput becomes lower without
considering D2D. Furthermore, our algorithm adopts NOMA
which further increases the EE of the network.

V. CONCLUSION

In this paper, we study the energy efficiency problem for a
D2D communications in UAV-assisted network, where the UAV
serves as a flying BS to transmit energy and information to D2D-
TXs, and D2D-TXs transmit information to D2D-RXs by the
harvested energy. We aim to maximize the EE of the network
whilst satisfying the constraints of minimum transmission rate
and the power budget. The EE maximization problem involves
joint optimization of the UAV location, beam pattern design,
power allocation and time scheduling, which is non-convex
and challenging to solve. To tackle this problem, by applying
the Dinkelbach method, the successive convex optimization
techniques and the MOEA/D algorithm, we propose a iter-
ative resource allocation algorithm to optimize the variables
sequentially. Numerical results illustrate the EE obtained by the
proposed algorithm outperform the existing works.
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