54,059 research outputs found

    Comparison of SUSY spectrum calculations and impact on the relic density constraints from WMAP

    Full text link
    We compare results of four public supersymmetric (SUSY) spectrum codes, Isajet, Softsusy, Spheno and Suspect to estimate the present-day uncertainty in the calculation of the relic density of dark matter in mSUGRA models. We find that even for mass differences of about 1% the spread in the obtained relic densities can be 10%. In difficult regions of the parameter space, such as large tan(beta) or large m_0, discrepancies in the relic density are much larger. We also find important differences in the stau co-annihilation region. We show the impact of these uncertainties on the bounds from WMAP for several scenarios, concentrating on the regions of parameter space most relevant for collider phenomenology. We also discuss the case of non-zero A_0 and the stop co-annihilation region. Moreover, we present a web application for the online comparison of the spectrum codes.Comment: 26 pages, 6 figures, 10 tables; version to appear in PR

    On the tau-functions of the Degasperis-Procesi equation

    Full text link
    The DP equation is investigated from the point of view of determinant-pfaffian identities. The reciprocal link between the Degasperis-Procesi (DP) equation and the pseudo 3-reduction of the CC_{\infty} two-dimensional Toda system is used to construct the N-soliton solution of the DP equation. The N-soliton solution of the DP equation is presented in the form of pfaffian through a hodograph (reciprocal) transformation. The bilinear equations, the identities between determinants and pfaffians, and the τ\tau-functions of the DP equation are obtained from the pseudo 3-reduction of the CC_{\infty} two-dimensional Toda system.Comment: 27 pages, 4 figures, Journal of Physics A: Mathematical and Theoretical, to be publishe

    Nonlinear effects for island coarsening and stabilization during strained film heteroepitaxy

    Full text link
    Nonlinear evolution of three-dimensional strained islands or quantum dots in heteroepitaxial thin films is studied via a continuum elasticity model and the development of a nonlinear dynamic equation governing the film morphological profile. All three regimes of island array evolution are identified and examined, including a film instability regime at early stage, a nonlinear coarsening regime at intermediate times, and the crossover to a saturated asymptotic state, with detailed behavior depending on film-substrate misfit strains but not qualitatively on finite system sizes. The phenomenon of island stabilization and saturation, which corresponds to the formation of steady but non-ordered arrays of strained quantum dots, occurs at later time for smaller misfit strain. It is found to be controlled by the strength of film-substrate wetting interaction which would constrain the valley-to-peak mass transport and hence the growth of island height, and also determined by the effect of elastic interaction between surface islands and the high-order strain energy of individual islands at late evolution stage. The results are compared to previous experimental and theoretical studies on quantum dots coarsening and saturation.Comment: 19 pages, 12 figures; submitted to Phys. Rev.

    Implications of heavy quark spin symmetry on heavy meson hadronic molecules

    Get PDF
    In recent years, many heavy mesons and charmonia were observed which do not fit in the conventional quark model expectations. Some of them are proposed to be hadronic molecules. Here we investigate the consequences of heavy quark spin symmetry on these heavy meson hadronic molecules. Heavy quark spin symmetry enables us to predict new heavy meson molecules and provides us with a method to test heavy meson molecule assumptions of some newly observed states. In particular, we predict an \eta_c'f_0(980) bound state as the spin-doublet partner of the Y(4660) proposed as a \psi'f_0(980) bound state with a mass of 4616^{+5}_{-6} MeV and the prominent decay mode \eta_c'\pi \pi. The width is predicted to be \Gamma(\eta_c'\pi\pi)=60\pm30 MeV. The pi^+\pi^- invariant mass spectrum and the line shape are calculated. We suggest to search for this state in B^{\pm}-->\eta_c'K^{\pm}\pi^+\pi^-, whose branching fraction is expected to be large.Comment: 4 pages, 2 figure

    Measuring Slepton Masses and Mixings at the LHC

    Get PDF
    Flavor physics may help us understand theories beyond the standard model. In the context of supersymmetry, if we can measure the masses and mixings of sleptons and squarks, we may learn something about supersymmetry and supersymmetry breaking. Here we consider a hybrid gauge-gravity supersymmetric model in which the observed masses and mixings of the standard model leptons are explained by a U(1) x U(1) flavor symmetry. In the supersymmetric sector, the charged sleptons have reasonably large flavor mixings, and the lightest is metastable. As a result, supersymmetric events are characterized not by missing energy, but by heavy metastable charged particles. Many supersymmetric events are therefore fully reconstructible, and we can reconstruct most of the charged sleptons by working up the long supersymmetric decay chains. We obtain promising results for both masses and mixings, and conclude that, given a favorable model, precise measurements at the LHC may help shed light not only on new physics, but also on the standard model flavor parameters.Comment: 24 pages; v2: fixed a typo in our computer program that led to some miscalculated branching ratios, various clarifications and minor improvements, conclusions unchanged, published versio

    Thermodynamic of the Ghost Dark Energy Universe

    Full text link
    Recently, the vacuum energy of the QCD ghost in a time-dependent background is proposed as a kind of dark energy candidate to explain the acceleration of the Universe. In this model, the energy density of the dark energy is proportional to the Hubble parameter HH, which is the Hawking temperature on the Hubble horizon of the Friedmann-Robertson-Walker (FRW) Universe. In this paper, we generalized this model and choice the Hawking temperature on the so-called trapping horizon, which will coincides with the Hubble temperature in the context of flat FRW Universe dominated by the dark energy component. We study the thermodynamics of Universe with this kind of dark energy and find that the entropy-area relation is modified, namely, there is an another new term besides the area term.Comment: 8 pages, no figure

    Global behavior of cosmological dynamics with interacting Veneziano ghost

    Full text link
    In this paper, we shall study the dynamical behavior of the universe accelerated by the so called Veneziano ghost dark energy component locally and globally by using the linearization and nullcline method developed in this paper. The energy density is generalized to be proportional to the Hawking temperature defined on the trapping horizon instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the fate of the universe and present the bifurcation phenomenon of the dynamical system of the universe. It seems that the universe could be dominated by dark energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE

    Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events

    Full text link
    A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and m-to-DH wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997-2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearson's correlation coefficients between the speeds of CMEs speeds and logarithmic peak intensity of SEP events are cc = 0.62 and cc = 0.58, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (-21.52 m/s2) than the non-SEP-associated CMEs (-5.63 m/s2). The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events are lower than for non-SEP-associated events. 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.Comment: 19 pages, 10 figures, 3 tables, accepted for publication by ApS
    corecore