3,426 research outputs found

    Effect of interfacial strain on spin injection and spin polarization of Co2CrAl/NaNbO3/Co2CrAl magnetic tunneling junction

    Full text link
    First-principles calculations were carried out to investigate interfacial strain effects on spin injection and spin polarization of a magnetic tunnel junction consisting of half-metallic full-Heusler alloy Co2CrAl and ferroelectric perovskite NaNbO3. Spin-dependent coherent tunneling was calculated within the framework of non-equilibrium Green's function technique. Both spin polarization and tunnel magnetoresistance (TMR) are affected by the interfacial strain but their responses to compressive and tensile strains are different. Spin polarization across the interface is fully preserved under a compressive strain due to stronger coupling between interfacial atoms, whereas a tensile strain significantly enhances interface states and lead to substantial drops in spin polarization and TMR

    Effect of Samarium doping on the nucleation of fcc-Aluminum in undercooled liquids

    Get PDF
    The effect of Sm doping on the fcc-Al nucleation was investigated in Al-Sm liquids with low Sm concentrations (xSm) with molecular dynamics simulations. The nucleation in the moderately undercooled liquid is achieved by the recently developed persistent-embryo method. Systematically computing the nucleation rate with different xSm (xSm=0%, 1%, 2%, 3%, 5%) at 700 K, we found Sm dopant reduces the nucleation rate by up to 25 orders of magnitudes with only 5% doping concentration. This effect is mostly associated with the increase in the free energy barrier with a minor contribution from suppression of the attachment to the nucleus caused by Sm doping.Comment: 4 figure

    A Study of the Effect of Anger on Immoral Judgment of Internet Privacy Invasion

    Get PDF
    With the emergence of Web 2.0, people are able to share their thoughts and photos with their friends and strangers. Yet, they also risk invasion of their privacy. Information privacy has therefore become an important issue in the information age. In this research, we focus on the influence of anger on immoral judgment of privacy invasion in cyberspace. Specifically, two scenarios, nonviolent and violent-depiction, are designed to investigate the influence of anger on immoral decision making. Our results revealed that the level of anger will increase immoral judgment in nonviolent and violent depiction scenarios, respectively. And the level of anger in violent-depiction scenario is higher than in nonviolent-depiction scenario. The research findings show that college students easily make an immoral judgment in violent situations. In violent depiction scenario, however, high moral obligation group can enhance the effect of ethical self-efficacy for moral judgment

    Reconfigurable mechanism generated from the network of Bennett linkages

    Get PDF
    A network of four Bennett linkages is proposed in this paper. Totally five types of overconstrained 5R and 6R linkages, including the generalized Goldberg 5R linkage, generalized variant of the L-shape Goldberg 6R linkage, Waldron's hybrid 6R linkage, isomerized case of the generalized L-shape Goldberg 6R linkage, and generalized Wohlhart's double-Goldberg 6R linkage, can be constructed by modifying this Bennett network. The 8R linkage formed by Bennett network serves as the basic mechanism to realise the reconfiguration among five types of overconstrained linkages by rigidifying some of the eight joints. The work also reveals the in-depth relationship among the Bennett-based linkages, which provides a substantial advancement in the design of reconfigurable mechanisms using overconstrained linkages

    Studies of Aluminum Reinsertion into Borosilicate Zeolites with Intersecting Channels of 10- and 12-Ring Channel Systems

    Get PDF
    The work here describes the kinetic analyses of aluminum replacement for boron in a suite of borosilicate molecular sieves. While the method has been described before as a means of converting synthesized borosilicates (with weak inherent acidity) to aluminosilicates (with much stronger acid strength) when there are large pores in the structure, here we carry out the transformation under less than optimal replacement concentrations, in order to better follow the kinetics. We examined several zeolite structures with boundary conditions of boron MEL where there are only 10-ring (or intermediate) pore structures and no Al is taken up, to multidimensional large pore zeolites, like boron beta, where Al substitution can occur everywhere. We also studied materials with both intermediate and large pores, SSZ-56, 57, 70, and 82. In the case of 57 up to 90% of the structure is made up of boron MEL. We observe that the pH drop is proportional to the Al reinsertion and is the same for all zeolites we studied. In one case, we compared a zeolite (SSZ-24) with boron and then no boron sites and found that Al does not go into defect sites. It was again confirmed (shown in earlier work) that Al will go into nest sites created by boron hydrolysis out of the substrate before Al treatment. Along those lines we also made two new observations: (1) the profile for Al uptake, as followed by pH drop, is the same kinetically, whether the boron is there or not; and (2) NMR showed that the boron is leaving the structure faster than Al can go back in (SSZ-33 study), even when we treat a material with boron in the lattice
    corecore