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ABSTRACT 

A network of four Bennett linkages is proposed in this paper. Totally five types of 

overconstrained 5R and 6R linkages, including the generalized Goldberg 5R linkage, 

generalized variant of the L-shape Goldberg 6R linkage, Waldron’s hybrid 6R linkage, 

isomerized case of the generalized L-shape Goldberg 6R linkage and generalized 

Wohlhart’s double-Goldberg 6R linkage, can be constructed by modifying this 

Bennett network. The 8R linkage formed by Bennett network serves as the basic 

mechanism to realise the reconfiguration among five types of overconstrained 

linkages by rigidifying some of the joints. The work also reveals the in-depth 

relationship among the Bennett-based linkages, which provides a substantial 

advancement in the design of reconfigurable mechanisms using overconstrained 

linkages. 
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1 Introduction 

Reconfigurable mechanism involves the design philosophy of fulfilling multiple tasks 

in different configurations using one comprehensive mechanism or integrated system. 

A recent review by Kuo, Dai and Yan [1] summarized the principals to change the 

topologies and/or configurations of mechanisms, including the number of effective 

links and/or joints, the kinematic pairs on certain joints, the adjacency and incidence 

of certain links and/or joints and the relative topology between links and/or joints. 

These principals could be separately applied or comprehensively hybridized to form 

different strategies for reconfigurable mechanism design. Based on robotic 

automation and systematic integration, several reconfigurable robotic platforms have 

been developed on the re-assembly of identical or similar robotic modules [2-4]. 

Some modular reconfigurable robotic systems have been applied to factory 

automation purpose [5, 6]. In the theoretical study, the kinematotropic mechanisms 

are the reconfigurable mechanisms whose global mobility can be changed with 

positional parameter actuations at the bifurcation points [7]. A number of 

kinematotropic mechanisms with single or multiple loops were developed [8-10]. The 

metamorphic mechanism, a type of reconfigurable mechanism with variable topology 

and mobility during operation [11], has received wide recognition during the past 

decade.  

From the perspective of kinematic singularity, overconstrained spatial linkages 

recently emerged as a good resource for designing such advanced mechanisms. 

Overconstrained linkages with two operation modes were proposed using the type 

synthesis method [12]. A number of multifunctional 7R linkages were designed by the 

insertion of one overconstrained mobile chain into a closed-loop 7R linkage [13]. 

Recently, the possibilities to design the operation form of a 4R linkage with an 
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overconstrained 6R linkage have been also explored [14]. The Bennett linkage is the 

only spatial overconstrained 4R linkage with joint axes neither concurrent nor parallel 

[15-17]. A number of linkages reported thereafter bear the similarities in using 

Bennett linkage as the basic element to form more complex overconstrained linkages 

in the Bennett-based linkage family [18]. Goldberg [19] used two or three Bennett 

linkages merged on the common links and then collinearly rigidified adjacent links to 

build 5R and 6R linkages. More generalized forms of these Goldberg 5R and 6R 

linkages could be obtained by varying the kink angles [19, 20]. The 5R and 6R 

linkages proposed by Myard [21] and the extended Myard 5R linkage [22] were 

actually special cases of the Goldberg’s 5R and 6R linkages [23]. A hybrid 6R linkage 

was proposed by Waldron [24, 25] with two Bennett linkages sharing a common 

revolute joint axis. A series of double-Goldberg 6R linkages were later constructed 

using methods similar as Goldberg’s [20, 26]. The method of isomerization [27] 

reveals the connection between linkages in the Bennett-based family and the Bricard-

related one [28-30]. Baker [18] proposed variants of the L-shape and serial Goldberg 

6R linkages, which exhibit different topologies among the Bennett linkages during 

construction. Using numerical methods, Mavroidis and Roth [31] and Dietmaier [32] 

found different overconstrained 6R linkages exhibit geometric properties of Bennett 

ratios. These linkages not only share the common elements of Bennett linkages, but 

also exhibit certain topology of the constructing Bennett linkages to enable motion, 

which will be addressed in this paper. 

One of the most important and fundamental methods to build overconstrained 

linkages is the superposition (or subtraction) of Bennett linkages on the links sharing 

the same geometric conditions, which was firstly proposed by Goldberg [19]. Take the 

generalized Goldberg 5R linkage in Fig. 1 as an example. Bennett linkage A is made 
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of links /a  and /c  with joints 1, 2, 0, and 5. And, Bennett linkage B is made of 

links /b  and /c  with joints 5, 0, 3, and 4. Here, the notion of /a  indicates that 

the length and twist of this link are a  and  , respectively, which could be applied 

similarly for the other links appeared in this paper. In order to form a Goldberg 5R 

linkage, we firstly superpose linkages A and B on their common link 05 in grey dash 

lines, and fix the kink angle kink  between links 20 and 03 to a value. Then, links 20 

and 03 are rigidified into one link. After removing the common link 05 and common 

joint 0, a 5R linkage is obtained with single degree of freedom (DoF). 

 
Fig. 1 The generalized Goldberg 5R linkage. 

 

 

Here, in order to design the reconfigurable mechanism among the Bennett-based 

linkages, the topology of a network with four Bennett linkages is modified by fixing 

certain joints. This paper is organized as follows. In section 2, a network of four 

Bennett linkages is introduced and the method to form the possible one-DoF 6R 

linkages is investigated. Section 3 explains the detailed construction and identification 

for all possible resultant single-loop overconstrained 6R and 5R linkages. Section 4 

demonstrates the reconfiguration among the different cases of the resultant linkages. 

Conclusion and discussions are enclosed in section 5. 
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2 A Network of Four Bennett Linkages and its related Bennett-based Linkages 

The Bennett linkage requests that the opposite links are with the same link length, 

twist and Bennett ratio. Then, a network of four Bennett linkages A, B, C and D can 

be constructed as shown in Fig. 2, which are made of links /a , /b , /c  and 

/d  with the same Bennett ratio [15, 16, 23], 

dcba

 sinsinsinsin
=== . (1) 

Such a spatial network of four Bennett linkages was firstly discussed by Goldberg [33] 

when he investigated the type K linkage of Kempe [34] in three-dimensional space. 

Later, comprehensive analysis about this network was conducted to explore its 

geometry and its relationship to the Kempe’s type K linkage [35, 36]. A single Bennett 

linkage has one DoF. The DoF of this network can be obtained analytically by setting 

DCBA ,,,  as the input of Bennett linkages A, B, C and D, respectively.  

A + B + C + D =2  (2) 

is held for any possible motion configuration. So, three of them are independent to 

determine the configuration of the network. Therefore, the Bennett network in Fig. 2 

has three DoF. 

 
Fig. 2 The network of four Bennett linkages A, B, C and D. 
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The Bennett-based linkages are a family of four-bar, five-bar and six-bar single-

loop overconstrained linkages with only one DoF. In order to explore the relationship 

between the network of four Bennett linkages in Fig. 2 and its related Bennett-based 

linkages, the topology has to be modified by reducing the number of active joints in 

this network to possibly six, five or four, and form a single-loop mechanism with one 

DoF.  

First, in order to reduce the number of links to six, two joints on the peripheral 

loop are selected and fixed. Thus, the two links connected by such joint on the 

peripheral loop are rigidified into one link. Next, the four links inside the network are 

removed to achieve a single-loop mechanism. For the example in Fig. 3, when joints 1 

and 4 are selected, the motions of link-pairs 81~12 and 34~45 are constrained. After 

removing the four links 02, 04, 06 and 08 inside the network, a single-loop 

mechanism with six active joints, i.e., a 6R linkage, can be obtained. Since the DoF of 

the network is 3, we should expect the resultant 6R linkage is one DoF after fixing 

two joints. Considering the circular sequence of the joint number, there are only six 

possible combinations on the selection of two joints from the eight joints on the 

peripheral loop as listed in Table 1, in which the thick solid lines and the black dot in 

between represent the rigidified link-pair and the fixed joint, and the four links in dash 

lines and joint 0 are to be removed. Next, we are going to analyse each case 

individually. 
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(a) (b) (c) 

 

Fig. 3 The modification process demonstrated: (a) the original network; (b) joints 1 

and 4 are fixed; and (c) the four links in the center are removed. 

 

Table 1 All possible combinations on the selection of two fixed joints.  

Case 

Selected 2 joints for 

fixing  

(and duplicates) 

Simplified 

representations 
Schematics 

I 

1/2, 

(or 2/3, 3/4, 4/5,  

5/6, 6/7, 7/8, 8/1) 

n/n+1 

 

II 
1/3, 

(or 3/5, 5/7, 7/1) 
odd/odd+2 

 

III 

1/4, 

(or 2/5, 3/6, 4/7, 5/8, 6/1, 

7/2, 8/3) 

n/n+3 
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IV 
1/5, 

(or 3/7) 
odd/odd+4 

 

V 
2/4, 

(or 4/6, 6/8, 8/2) 
even/even+2 

 

VI 
2/6, 

(or 4/8) 
even/even+4 

 

3 Network Modification and Linkage Identification 

3.1 Cases I&II: Generalized Goldberg 5R Linkage 

When joints 1 and 2 are fixed in Fig. 4(a), links 81, 12 and 23 become rigid and 

Bennett linkages A and B become immobile, i.e. joint 3 is passively fixed and link-

pair 80-04 is rigidified as well. Then, the right half of the network with linkages C and 

D becomes a generalized Goldberg 5R linkage with one DoF. After removing the four 

links inside the loop, the 6R linkage is in fact a generalized Goldberg 5R linkage with 

joint 3 immobile. Similarly, when joints 1 and 3 are fixed, i.e. Case II in Table 1, see 

Fig. 4(b), the left half of the network will be immobile as well, with joint 2 passively 

fixed. Thus, the network is essentially a generalized Goldberg 5R linkage with only 

one DoF after removing the four links at the centre. Therefore, Cases I and II linkages 

are of the same type.  
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(a)  (b)  

Fig. 4 The modification of the Bennett network into Cases I & II linkages: (a) the 

Case I linkage with joints 1 and 2 fixed and (b) the Case II linkage with joints 1 and 3 

fixed. 

 

 

3.2 Case III: Generalized Variant of the L-shape Goldberg 6R Linkage 

As shown in Fig. 5(a), when joints 1 and 4 are fixed, links 82 and 35 are introduced as 

rigid links. We can identify the resultant linkage by inspecting its special case when 

link-pairs 81-12 and 34-45 are collinearly rigidified, see Fig. 5(b). Bennett linkage A 

contracts into a straight line, while joints 0 and 1 are constrained along this line. It 

forms a variant of the L-shape Goldberg 6R linkage proposed by Baker [18]. In the 

general case that the link-pairs 81-12 and 34-45 are rigidified at any kink angles, the 

resultant 6R linkage in Fig. 5(a) can be considered as a generalized variant of the L-

shape Goldberg 6R linkage with one DoF. 
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(a) (b) 

Fig. 5 The modification of the Bennett network into Case III linkage: (a) the 

schematics of the modification process of Case III linkage; (b) linkage identification 

in special configuration. 

 

3.3 Case IV: Waldron’s Hybrid 6R Linkage 

In Fig. 6(a), when joints 1 and 5 are fixed, links 82 and 46 are rigid links. The 

resultant 6R linkage can be considered as Bennett linkages B and D with the same 

Bennett ratio sharing the common joint 0. Following the construct method of the 

Waldron’s hybrid 6R linkage, a 6R linkage in Fig. 6(b) can be obtained, which is the 

same as in Fig. 6(a) kinematically. Therefore the case IV linkage belongs to Waldron’s 

hybrid 6R linkage [24, 25].  

 
 

(a) (b) 

Fig. 6 The modification of the Bennett network into Case IV linkage: (a) the 

schematics of the modification process of Case IV linkage; (b) linkage identification 

for the Case IV linkage. 
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3.4 Case V: Isomerized Generalized L-shape Goldberg 6R Linkage 

As shown in Fig. 7(a), when joints 2 and 4 are fixed, links 13 and 35 are rigid links. 

To identify the resultant linkage, we can inspect the loop connected by joints 1, 3, 5, 6, 

0 and 8, which is a generalized L-shape Goldberg 6R linkage [19]. When replacing 

link-pair 60-08 by link-pair 67-78 in Fig. 7(b), an isomerized case [27] of the linkage 

will be obtained. Therefore, the resultant linkage is an isomerized case of the 

generalized L-shape Goldberg 6R linkage, which has only one DoF.  

  
(a)  (b)  

Fig. 7 The modification of the Bennett network into Case V linkage: (a) the 

schematics of the modification process of Case V linkage; (b) linkage identification 

for the Case V linkage. 

 

3.5 Case VI: Generalized Wohlhart’s Double-Goldberg 6R Linkage 

In Fig. 8(a), when joints 2 and 6 are rigidified, links 13 and 57 are rigid links. Then 

Bennett linkages A and B form a generalized Goldberg 5R linkage. So do the linkages 

C and D. The resultant linkage can be identified as the 6R linkage merged from two 

Goldberg 5R linkages on common link 80 and 04, see Fig. 8(b), which is in fact a 

generalized Wohlhart’s double-Goldberg 6R linkage with one DoF [20].  
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(a)  (b)  

Fig. 8 The modification of the Bennett network into Case VI linkage: (a) the 

schematics of the modification process of Case VI linkage; (b) linkage identification 

for the Case VI linkage. 

4 Reconfiguration among Five Cases of Bennett-based Linkages 

By fixing two of eight joints on the peripheral loop of the Bennett network and 

removing four links in the centre, there are five linkages obtained. Due to this 

common construct process, it should be expected that these five linkages can be 

reconfigured into each other by changing the fixed joints referring to Table 1. For 

example, the linkage in Fig. 9(a) with joints 1 and 5 fixed is a Case IV Waldron’s 

hybrid 6R linkage. Then, we can fix joints 2 and 4 to make the linkage immobile in 

the current configuration, see Fig. 9(b). After relaxing joints 1 and 5, the resultant 6R 

linkage is mobile, which is the Case V isomerized generalized L-shape Goldberg 6R 

linkage, as shown in Fig. 9(c). Thus, Fig. 9 shows the reconfiguration process 

between two of five Bennett-based linkages we constructed from the Bennett network. 
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(a) (b) (c) 

Fig. 9 Reconfiguration process from (a) a Case IV Waldron’s hybrid 6R linkage, 

through (b) fixing kink angles on joints 2 and 4, to (c) a Case V isomerized 

generalized Goldberg L-shape 6R linkage after releasing kink angles on joints 1 and 5. 

 

 

An example of possible reconfiguration sequence is demonstrated in Table 2 with 

geometric parameters as Eq. (3). It starts from the Cases I&II Goldberg 5R linkage 

moving in its own kinematic path marked in black in Fig. 10(a). When it moves to a 

desired configuration )23(13P  where 180/00.304  −= , we could fix joint 4, see Fig. 

9(b), and then release joint 2 in Fig. 9(c). As a result, a Case III generalized variant of 

the L-shape Goldberg 6R linkage can be obtained, whose kinematic paths are plotted 

in the black dash lines in Fig. 10. )23(13P  is located at the intersection between the 

kinematic paths of Cases I (or II) and III linkages. Similarly, move Case III linkage to 

a desired configuration at 34P  in Fig. 10(d) with joint 5 fixed and joint 4 released, a 

Case IV Waldron’s hybrid 6R linkage whose kinematic path is in grey solid line in Fig. 

10. Furthermore, this linkage is reconfigured into Case V isomerized generalised L-

shape Goldberg 6R linkage at 45P , then into Case VI generalized Wohlhart’s double-

Goldberg 6R linkage at 56P .  
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.180/00.40,7847.0

;180/00.20,4175.0

;180/00.150,6104.0

;180/00.125,0000.1









−==

−==

−==

−==

d

c

b

a  

(3) 

Table 2 An example of reconfiguration sequence among all six possible linkage cases 

from the network of four Bennett linkages. 
Revolute 

variables 
Case I Case II Case III Case IV Case V Case VI 

1  

Fixed at 

180

00.75 
−  

Fixed at 

180

00.75 
−  

Fixed at 

180

00.75 
−  

Fixed at 

180

00.75 
−  

Movable 

Movable 2  

Fixed at 

180

68.84 
 

(Passively 

fixed at 

180

68.84 
) 

Movable 

Movable 

Fixed at 

180

24.26 
−  

3  

(Passively 

fixed at 

180

06.33 
− ) 

Fixed at 

180

06.33 
−  

Movable 

4  

Movable Movable 

Fixed at 

180

00.30 
−  

Fixed at 

180

00.40 
 

Fixed at 

180

00.40 
 

5  

Movable 

Fixed at 

180

00.90 
−  

Movable 

Movable 6  

(output) 

Movable 
7  

(input) 

8  

Fixed at 

180

00.20 
−  

 

The reconfiguration process shown above is only an example for demonstration. 

Depending on the need of design, one can choose different sets of joints from Table 1 

to be fixed, then form a sequence of reconfiguration as Table 2, and finally achieve 

the reconfiguration among different linkages cases as Fig. 10 with physical model in 

Fig.11. And the reconfiguration points could be any point on the corresponding 

kinematic path. It is decided by the kinematic property of different linkages and the 

desired configurations to conduct the reconfiguration between the linkages.  
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Fig. 10 Map of reconfiguration among five cases of linkages from the Bennett 

network. The movable joints are in black color and the fixed joints are in grey color. 

(a) Case I (II) linkage with joints 1 and 2 (or 1 and 3) fixed; (b) reconfiguration from 

Case I (II) to Case III linkages at configuration P13(23); (c) Case III linkage with joints 

1 and 4 fixed; (d) reconfiguration from Case III to Case IV linkages at configuration 

P34; (e) Case IV linkage with joints 1 and 5 fixed;  (f) reconfiguration from Case IV to 

Case V linkages at configuration P45; (g) Case V linkage with joints 2 and 4 fixed; (h) 

reconfiguration from Case V to Case VI linkages at configuration P56; (i) Case VI 

linkage with joints 4 and 8 fixed. 

 

   
(a)      (b)      (c) 

   
(d)      (e)      (f) 
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(g)      (h)      (i) 

Fig. 11 The physical model to demonstrate the motion and reconfiguration 

corresponding to Fig.10. 

 

5 Discussions 

Besides the 5R and 6R linkages, it is worth discussing the possibilities to achieve 

single-loop overconstrained 4R linkage, i.e., a Bennett linkage, out of the Bennett 

network. The geometric conditions of the Bennett linkage require zero offsets on all 

links [15-17], which essentially requires the rigidified link-pairs to be collinearly 

posed, making the kink angles to be either 0 or   [37, 38]. As a result, there are two 

special configurations that are worth noticing. One is when the link-pairs on joints 1, 

3, 5 and 7 are constrained into a line, and the network will therefore contract into a 

line, which is a trivial configuration for a mobile linkage. The other configuration is 

when the link-pairs on joints 2, 4, 6 and 8 are constrained into a line as shown in 错误!

未找到引用源。. In this configuration, the resultant network will have only four 

movable joints. A single-loop mechanism can be achieved after removing the four 

links at the centre. The following geometry constraint must be fulfilled to achieve a 

Bennett linkage. 

( ) ( )
dcba +

+
=

+

+  sinsin
. (4) 

Considering Eqs. (1) and (4), we have  

2
tan

2
tan

2
tan

2
tan


= . (5) 
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Under Eq. (5), Cases V and VI linkages will be degenerated into Bennett linkages 

with either two or more joints fixed [39]. Then we will get a linkage reconfigurable 

among Goldberg 5R linkage, generalised variants of L-shape Goldberg 6R linkage, 

Waldron’s hybrid 6R linkage and Bennett linkage. 

  
 

Fig. 11 A special configuration of Bennett linkage from the reconfigurable Bennett 

network. 

 

Finally, we should point out that the reconfiguration among those five linkages 

can be conducted at any configuration as long as it can be constructed into the 

network of four Bennett linkages as we initially proposed. Recent work reveals that 

the Bennett-based linkages could bifurcate from the constructed form into non-

constructed form when the linkages have the collinear configuration, which will be 

addressed in a later paper. Once the linkage moves into the non-constructed form, 

which cannot be constructed with two or three Bennett linkages, such as Wohlhart’s 

double-Goldberg 6R linkage [30], it cannot be reconfigured into other Bennett-based 

linkage by simple changing the fixed joints. Meanwhile, as the 8R linkage formed by 

the peripheral loop of Bennett network has 3 DoF, its working space will be much 

larger than the sum of five resultant 5R/6R linkages. So during the reconfiguration, 

the joints must be fixed first to lock the configuration before releasing the previously 

fixed joint. Otherwise, the 8R linkage will move to the non-constructive 

configurations, which will cause the failure of reconfiguration process.  
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6 Conclusion 

In this paper, a network of four Bennett linkages has been proposed. By modifying the 

topology of this Bennett linkage network, five overconstrained 5R and 6R linkages 

have been obtained with only one DoF. The resultant linkage cases are generalized 

Goldberg 5R linkage, generalized variant of the L-shape Goldberg 6R linkage, 

Waldron's hybrid 6R linkage with zero common offset, isomerized case of the 

generalized L-shape Goldberg 6R linkage and generalized Wohlhart's double-

Goldberg 6R linkage. They were originally derived by using different methods, and 

now correlated under the same construction basis of the Bennett network. 

Reconfiguration among these five linkage cases has been realised by fixing different 

set of joints, which paves the way for potential applications of such reconfigurable 

mechanisms in engineering design.  
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Appendix A 

Once the link-pair is rigidified with the fixed joint in the linkage, it is necessary 

to obtain the geometric parameters of the rigidified. As shown in Fig. A1, link-pair 

12-23 and joint 2 are fixed. Then the link 13 can be defined by the geometric 

parameters 13a , 13  , 1R  and 3R , which are equivalent length, twist angle and offsets 
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of the rigidified link respectively. To calculate these parameters, geometric 

relationship in the spatial triangle 123 can be used, which leads to 

1

sin sin
tan

sin cos cos sin cos

kink

kink

 


    
 = −

+
,  

3

sin sin
tan

sin cos cos sin cos

kink

kink

 


    
 = −

+
,  

3 3 3
13

sin sin sin sin cos cos cos cos sin cos
tan

cos cos sin sin cos

kink kink

kink

         


    

  − −
=

−
,  

13

3 3 3

cos sin sin cos cos cos sin cos sin cos

sin sin sin sin cos cos cos cos sin cos

kink kink

kink kink

b b a a
a

         

         

+ + +
=

  − −
, (A1) 

3 3 3
1

3 3 3

cos sin cos cos sin sin

sin sin sin sin cos cos cos cos sin cos

kink kink

kink kink

a a b
R

     

         

  + −
=

  − + +
,  

3 3 3

3 3
3

3 3 3

( cos cos sin cos cos cos sin cos sin cos

sin sin cos sin sin sin sin )

sin sin sin sin cos cos cos cos sin cos

kink kink

kink

kink kink

a b a

b a
R

         

      

         

  + +

 − −
=

  − −

.  

 

  
(a) (b) 

Fig. A1 The geometric parameters of rigidified link: (a) no offset on joint 2; (b) offset 

on joint 2. 

 

Here, joint angles 
1  and 

3  are introduced as intermediate variables, which are 

the differences of the joint revolute variables measured on the original and resultant 

linkages. Eq. (A1) is only for the situation that the offset on joint 2 is zero as shown in 
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Fig. A1(a). When there is an offset 
2R  on joint 2 as shown in Fig. A1(b), which is the 

situation for Goldberg 5R linkage in Case I/II, the geometric parameters become 

1
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
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−
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b b a a
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, (A2) 
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.  

Kinematics of the five resultant linkages have been well-studied by other 

researchers, see the references listed in Table A. The foundation of kinematic analysis 

in this case is to identify the geometric parameters of rigidified link which have been 

discussed above. Applying the derived parameters into the closure equations, 

kinematic analysis of each linkage will be easily accomplished. 

From previous work, it can be found that it is difficult to obtain analytical 

explicit solution to closure equations for some 3D overconstrained linkages. So 

numerical methods, such as Singular Value Decomposition (SVD) [14,30], has been 

applied as an effective tool to acquire kinematic paths of the linkages, even to find the 

new 3D linkages [32]. In this paper, we also used the SVD method to obtain all the 
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kinematic paths as follows for the five reconfigurable cases with the same geometric 

parameters given in Eq. (3). 

Table A The references on the kinematics of the resultant linkages derived from the 

reconfigurable Bennett network. 

Case Linkage 
Closure equation 

reference 

I & II Generalized Goldberg 5R linkage  [18, 20] 

III Generalized variant of the L-shape Goldberg 6R linkage [18, 20] 

IV Waldron’s hybrid 6R linkage with zero offset  [18] 

V 
Isomerized case of the generalized L-shape Goldberg 6R 

linkage  

[18] 

VI Generalized Wohlhart’s double-Goldberg 6R linkage [20] 

 

 
 

 
 

  

    
Fig. A2 The kinematic paths of case I & II: generalized Goldberg 5R linkage  
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Fig. A3 The kinematic paths of case III: generalized variant of the L-shape Goldberg 

6R linkage  

 

 
 

 
 

  

    
Fig. A4 The kinematic paths of case IV: Waldron’s hybrid 6R linkage with zero offset 

 

 
 

 
 

  

    
Fig. A5 The kinematic paths of case V: isomerized case of the generalized L-shape 

Goldberg 6R linkage  
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Fig. A6 The kinematic paths of case VI: generalized Wohlhart’s double-Goldberg 6R 

linkage  
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