933 research outputs found

    Looking for a Heavy Higgsino LSP in Collider and Dark Matter Experiments

    Get PDF
    A large part of the mSUGRA parameter space satisfying the WMAP constraint on the dark matter relic density corresponds to a higgsino LSP of mass ≃1\simeq 1 TeV. We find a promising signal for this LSP at CLIC, particularly with polarized electron and positron beams. One also expects a viable monochromatic γ\gamma-ray signal from its pair annihilation at the galactic center at least for cuspy DM halo profiles. All these results hold equally for the higgsino LSP of other SUSY models like the non-universal scalar or gaugino mass models and the so-called inverted hierarchy and more minimal supersymmetry models.Comment: LaTeX, 18 pages with 5 embedded postscript figures. Added a couple of references (version to appear in Phys. Lett. B

    Spectral function of the electron in a superconducting RVB state

    Full text link
    We present a model calculation of the spectral function of an electron in a superconducting resonating valence bond (RVB) state. The RVB state, described by the phase-string mean field theory is characterized by three important features: (i) spin-charge separation, (ii) short range antiferromagnetic correlations, and (iii) holon condensation. The results of our calculation are in good agreement with data obtained from Angle Resolved Photoemission Spectroscopy (ARPES) in superconducting Bi 2212 at optimal doping concentration.Comment: 4 pages, 3 figure

    An Analysis of Dynamics of Retaining Wall Supported Embankments: Towards More Sustainable Railway Designs

    Get PDF
    Retaining walls are structures used to retain earth materials on a slope. Typically, they are designed for static loads, but for highway and railway infrastructures, vehicle-induced dynamic responses are also relevant. Therefore, retaining wall structures are often designed with a factor of safety that is higher than necessary, because it can be challenging to quantify the magnitude of expected dynamic stresses during the design stage. This unnecessary increase in material usage reduces the sustainability of the infrastructures. To improve railway retaining wall sustainability, this paper presents the results from a field monitoring campaign on a heavy-haul rail line with a retaining wall, studying the dynamics induced in response to 30-ton axle load trains running at speeds of between 5 km/h and 100 km/h. The site comprises an earth embankment supported by a gravity retaining wall, with accelerometers on the sleepers, roadbed surface, and retaining wall, velocity sensors on the roadbed, and strain gauges on the rail web to record wheel–rail forces. The vibration intensities collected from various locations are processed to explore the peak particle velocities, maximum transient vibration values, and one-third octave band spectrums. Two transfer functions define the vibration transmission characteristics and attenuation of vibration amplitude along the propagation path. The long-term dynamic stability of the track formation is studied using dynamic shear strain derived from the effective velocity. The peaks of observed contact forces and vibrations are statistically analyzed to assess the impact of train speed on the dynamic behavior of the infrastructure system. Next, a 3D numerical model expresses the maximum stress and displacements on the roadbed surface as a function of train speed. The model evaluates the earth pressures at rest and vehicle-induced additional earth pressures and horizontal wall movement. The investigation provides new insights into the behavior of railway track retaining walls under train loading, and the field data are freely available for other researchers to download. The findings could facilitate the design of more sustainable retaining walls in the future

    Spin-based quantum information processing with semiconductor quantum dots and cavity QED

    Get PDF
    A quantum information processing scheme is proposed with semiconductor quantum dots located in a high-Q single mode QED cavity. The spin degrees of freedom of one excess conduction electron of the quantum dots are employed as qubits. Excitonic states, which can be produced ultrafastly with optical operation, are used as auxiliary states in the realization of quantum gates. We show how properly tailored ultrafast laser pulses and Pauli-blocking effects, can be used to achieve a universal encoded quantum computing.Comment: RevTex, 2 figure

    The Inert Doublet Model and Inelastic Dark Matter

    Full text link
    The annual modulation observed by DAMA/NaI and DAMA/Libra may be interpreted in terms of elastic or inelastic scattering of dark matter particles. In this paper we confront these two scenarios within the framework of a very simple extension of the Standard Model, the Inert Doublet Model (IDM). In this model the dark matter candidate is a scalar, the lightest component of an extra Higgs doublet. We first revisit the case for the elastic scattering of a light scalar WIMP, M_DM~10 GeV, a scenario which requires that a fraction of events in DAMA are channelled. Second we consider the possibility of inelastic Dark Matter (iDM). This option is technically natural in the IDM, in the sense that the mass splitting between the lightest and next-to-lightest neutral scalars may be protected by a Peccei-Quinn (PQ) symmetry. We show that candidates with a mass M_DM between ~535 GeV and ~50 TeV may reproduce the DAMA data and have a cosmic abundance in agreement with WMAP. This range may be extended to candidates as light as ~50 GeV if we exploit the possibility that the approximate PQ symmetry is effectively conserved and that a primordial asymmetry in the dark sector may survive until freeze-out.Comment: 16 pages, 7 figures. v2: minor changes and discussion on the embedding in SO(10) added. v3: matches the published version in JCA

    Quantum computing with four-particle decoherence-free states in ion trap

    Get PDF
    Quantum computing gates are proposed to apply on trapped ions in decoherence-free states. As phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum computing based on this model would be perfect. Possible application of our scheme in future ion-trap quantum computer is discussed.Comment: 10 pages, no figures. Comments are welcom

    Abelian Hidden Sectors at a GeV

    Get PDF
    We discuss mechanisms for naturally generating GeV-scale hidden sectors in the context of weak-scale supersymmetry. Such low mass scales can arise when hidden sectors are more weakly coupled to supersymmetry breaking than the visible sector, as happens when supersymmetry breaking is communicated to the visible sector by gauge interactions under which the hidden sector is uncharged, or if the hidden sector is sequestered from gravity-mediated supersymmetry breaking. We study these mechanisms in detail in the context of gauge and gaugino mediation, and present specific models of Abelian GeV-scale hidden sectors. In particular, we discuss kinetic mixing of a U(1)_x gauge force with hypercharge, singlets or bi-fundamentals which couple to both sectors, and additional loop effects. Finally, we investigate the possible relevance of such sectors for dark matter phenomenology, as well as for low- and high-energy collider searches.Comment: 43 pages, no figures; v2: to match JHEP versio

    A framework for bounding nonlocality of state discrimination

    Full text link
    We consider the class of protocols that can be implemented by local quantum operations and classical communication (LOCC) between two parties. In particular, we focus on the task of discriminating a known set of quantum states by LOCC. Building on the work in the paper "Quantum nonlocality without entanglement" [BDF+99], we provide a framework for bounding the amount of nonlocality in a given set of bipartite quantum states in terms of a lower bound on the probability of error in any LOCC discrimination protocol. We apply our framework to an orthonormal product basis known as the domino states and obtain an alternative and simplified proof that quantifies its nonlocality. We generalize this result for similar bases in larger dimensions, as well as the "rotated" domino states, resolving a long-standing open question [BDF+99].Comment: 33 pages, 7 figures, 1 tabl
    • 

    corecore