430 research outputs found

    The Axisymmetric Pulsar Magnetosphere

    Get PDF
    We present, for the first time, the structure of the axisymmetric force-free magnetosphere of an aligned rotating magnetic dipole, in the case in which there exists a sufficiently large charge density (whose origin we do not question) to satisfy the ideal MHD condition, EB=0{\bf E\cdot B}=0, everywhere. The unique distribution of electric current along the open magnetic field lines which is required for the solution to be continuous and smooth is obtained numerically. With the geometry of the field lines thus determined we compute the dynamics of the associated MHD wind. The main result is that the relativistic outflow contained in the magnetosphere is not accelerated to the extremely relativistic energies required for the flow to generate gamma rays. We expect that our solution will be useful as the starting point for detailed studies of pulsar magnetospheres under more general conditions, namely when either the force-free and/or the ideal MHD condition EB=0{\bf E\cdot B}=0 are not valid in the entire magnetosphere. Based on our solution, we consider that the most likely positions of such an occurrence are the polar cap, the crossings of the zero space charge surface by open field lines, and the return current boundary, but not the light cylinder.Comment: 15 pages AAS Latex, 5 postscript figure

    Optimising Boltzmann codes for the Planck era

    Full text link
    High precision measurements of the Cosmic Microwave Background (CMB) anisotropies, as can be expected from the Planck satellite, will require high-accuracy theoretical predictions as well. One possible source of theoretical uncertainty is the numerical error in the output of the Boltzmann codes used to calculate angular power spectra. In this work, we carry out an extensive study of the numerical accuracy of the public Boltzmann code CAMB, and identify a set of parameters which determine the error of its output. We show that at the current default settings, the cosmological parameters extracted from data of future experiments like Planck can be biased by several tenths of a standard deviation for the six parameters of the standard Lambda-CDM model, and potentially more seriously for extended models. We perform an optimisation procedure that leads the code to achieve sufficient precision while at the same time keeping the computation time within reasonable limits. Our conclusion is that the contribution of numerical errors to the theoretical uncertainty of model predictions is well under control -- the main challenges for more accurate calculations of CMB spectra will be of an astrophysical nature instead.Comment: 13 pages, 4 figure

    Accretion-Powered Stellar Winds II: Numerical Solutions for Stellar Wind Torques

    Get PDF
    [Abridged] In order to explain the slow rotation observed in a large fraction of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar winds in torquing down the stars. For this mechanism to be effective, the stellar winds need to have relatively high outflow rates, and thus would likely be powered by the accretion process itself. Here, we use numerical magnetohydrodynamical simulations to compute detailed 2-dimensional (axisymmetric) stellar wind solutions, in order to determine the spin down torque on the star. We explore a range of parameters relevant for CTTSs, including variations in the stellar mass, radius, spin rate, surface magnetic field strength, the mass loss rate, and wind acceleration rate. We also consider both dipole and quadrupole magnetic field geometries. Our simulations indicate that the stellar wind torque is of sufficient magnitude to be important for spinning down a ``typical'' CTTS, for a mass loss rate of 109M\sim 10^{-9} M_\odot yr1^{-1}. The winds are wide-angle, self-collimated flows, as expected of magnetic rotator winds with moderately fast rotation. The cases with quadrupolar field produce a much weaker torque than for a dipole with the same surface field strength, demonstrating that magnetic geometry plays a fundamental role in determining the torque. Cases with varying wind acceleration rate show much smaller variations in the torque suggesting that the details of the wind driving are less important. We use our computed results to fit a semi-analytic formula for the effective Alfv\'en radius in the wind, as well as the torque. This allows for considerable predictive power, and is an improvement over existing approximations.Comment: Accepted for publication in Ap

    Particle acceleration close to the supermassive black hole horizon: the case of M87

    Full text link
    The radio galaxy M87 has recently been found to be a rapidly variable TeV emitting source. We analyze the implications of the observed TeV characteristics and show that it proves challenging to account for them within conventional acceleration and emission models. We discuss a new pulsar-type scenario for the origin of variable, very high energy (VHE) emission close to the central supermassive black hole and show that magneto-centrifugally accelerated electrons could efficiently Compton upscatter sub-mm ADAF disk photons to the TeV regime, leading to VHE characteristics close to the observed ones. This suggests, conversely, that VHE observations of highly under-luminous AGNs could provide an important diagnostic tool for probing the conditions prevalent in the inner accretion disk of these sources.Comment: 5 pages, one figure (typos corrected); based on presentation at "High Energy Phenomena in Relativistic Outflows", Dublin, Sept. 2007; accepted for publication in International Journal of Modern Physics

    Caching and Interpolated Likelihoods: Accelerating Cosmological Monte Carlo Markov Chains

    Full text link
    We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a "proof of concept", and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.Comment: v2 Trivial Latex change. Source code: http://easther.physics.yale.edu/interpmc.htm

    Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?

    Full text link
    Jets and outflows from young stellar objects are proposed candidates to drive supersonic turbulence in molecular clouds. Here, we present the results from multi-dimensional jet simulations where we investigate in detail the energy and momentum deposition from jets into their surrounding environment and quantify the character of the excited turbulence with velocity probability density functions. Our study include jet--clump interaction, transient jets, and magnetised jets. We find that collimated supersonic jets do not excite supersonic motions far from the vicinity of the jet. Supersonic fluctuations are damped quickly and do not spread into the parent cloud. Instead subsonic, non-compressional modes occupy most of the excited volume. This is a generic feature which can not be fully circumvented by overdense jets or magnetic fields. Nevertheless, jets are able to leave strong imprints in their cloud structure and can disrupt dense clumps. Our results question the ability of collimated jets to sustain supersonic turbulence in molecular clouds.Comment: 33 pages, 18 figures, accepted by ApJ, version with high resolution figures at: http://www.ita.uni-heidelberg.de/~banerjee/publications/jet_paper.pd

    Estimates of unresolved point sources contribution to WMAP 5

    Full text link
    We present an alternative estimate of the unresolved point source contribution to the WMAP temperature power spectrum based on current knowledge of sources from radio surveys in the 1.4-90 GHz range. We implement a stochastic extrapolation of radio point sources in the NRAO-VLA Sky Survey (NVSS) catalog, from the original 1.4 GHz to the ~ 100 GHz frequency range relevant for CMB experiments. With a bootstrap approach, we generate an ensemble of realizations that provides the probability distribution for the flux of each NVSS source at the final frequency. The predicted source counts agree with WMAP results for S > 1 Jy and the corresponding sky maps correlate with WMAP observed maps in Q-, V- and W- bands, for sources with flux S > 0.2 Jy. The low-frequency radio surveys found a steeper frequency dependence for sources just below the WMAP nominal threshold than the one estimated by the WMAP team. This feature is present in our simulations and translates into a shift of 0.3-0.4 \sigma in the estimated value of the tilt of the power spectrum of scalar perturbation, n_s, as well as \omega_c. This approach demonstrates the use of external point sources datasets for CMB data analysis.Comment: 12 pages, 8 figures, to be published on MNRA

    Assessing the levels of awareness among european citizens about the direct and indirect impacts of plastics on human health

    Get PDF
    There is an urgent need to assess European citizens' perspective regarding their plastic consumption and to evaluate their awareness of the direct and indirect effect of plastics on human health in order to influence current behavior trends. In this study, the evaluation has been cross-related with scientific facts, with the final aim of detecting the most recommendable paths in increasing human awareness, reducing plastic consumption, and consequently impacting human health. A statistical analysis of quantitative data, gathered from 1000 European citizens via an online survey in the period from May to June 2020, showed that a general awareness about the direct impact of plastic consumption and contamination (waste) on human health is high in Europe. However, only a few participants (from a higher educational group) were aware of the indirect negative effects that oil extraction and industrial production of plastic can have on human health. This finding calls for improved availability of this information to general public. Despite the participants' positive attitude toward active plastic reduction (61%), plastic consumption on a daily basis is still very high (86%). The most common current actions toward plastic reduction are plastic bag usage, reusage, or replacement with sustainable alternatives (e.g., textile bags) and selecting products with less plastic packaging. The participants showed important criticism toward the information available to the general public about plastics and health. This awareness is important since significant relation has been found between the available information and the participants' decisions on the actions they might undertake to reduce plastic consumption. The study clearly showed the willingness of the participants to take action, but they also requested to be strongly supported with joint efforts from government, policies, and marketing, defining it as the most successful way toward implementing these changes

    On the geometrical origin of periodicity in blazar-type sources

    Full text link
    Periodicities in blazar light curves may be related to helical trajectories in extragalactic radio jets by differential Doppler boosting effects. We consider ballistic and non-ballistic (i.e., radial) trajectories and discuss three possible periodic driving mechanisms for the origin of helical jet paths, namely, orbital motion in a binary black hole system (BBHS), jet precession, and intrinsic jet rotation. It is shown that precessional-driven ballistic motion is unlikely to result in observable periods of less than several tens of years. We demonstrate that for non-ballistic helical motion the observed period is generally strongly shortened relative to the real physical driving period because of light-travel time effects. Internal jet rotation may thus account for observed periods Pobs10P_{\rm obs} \leq 10 days. Periodicity due to orbital-driven (non-ballistic) helical motion, on the other hand, is usually constrained to periods of Pobs10P_{\rm obs} \geq 10 days, while Newtonian-driven precession is unlikely to be responsible for periodicity on a timescale Pobs100P_{\rm obs} \leq 100 days but may well be associated with periods of Pobs1P_{\rm obs} \geq 1 yr.Comment: 10 pages, ApJ Letters in pres

    One-dimensional collision carts computer model and its design ideas for productive experiential learning

    Full text link
    We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In the field of designing computer simulations, we discuss briefly three pedagogical considerations such as 1) consistent simulation world view with pen paper representation, 2) data table, scientific graphs and symbolic mathematical representations for ease of data collection and multiple representational visualizations and 3) game for simple concept testing that can further support learning. We also suggest using physical world setup to be augmented complimentary with simulation while highlighting three advantages of real collision carts equipment like tacit 3D experience, random errors in measurement and conceptual significance of conservation of momentum applied to just before and after collision. General feedback from the students has been relatively positive, and we hope teachers will find the simulation useful in their own classes. 2015 Resources added: http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3), 301 (2012); ISSN 0031-912
    corecore