430 research outputs found
The Axisymmetric Pulsar Magnetosphere
We present, for the first time, the structure of the axisymmetric force-free
magnetosphere of an aligned rotating magnetic dipole, in the case in which
there exists a sufficiently large charge density (whose origin we do not
question) to satisfy the ideal MHD condition, , everywhere.
The unique distribution of electric current along the open magnetic field lines
which is required for the solution to be continuous and smooth is obtained
numerically. With the geometry of the field lines thus determined we compute
the dynamics of the associated MHD wind. The main result is that the
relativistic outflow contained in the magnetosphere is not accelerated to the
extremely relativistic energies required for the flow to generate gamma rays.
We expect that our solution will be useful as the starting point for detailed
studies of pulsar magnetospheres under more general conditions, namely when
either the force-free and/or the ideal MHD condition are not
valid in the entire magnetosphere. Based on our solution, we consider that the
most likely positions of such an occurrence are the polar cap, the crossings of
the zero space charge surface by open field lines, and the return current
boundary, but not the light cylinder.Comment: 15 pages AAS Latex, 5 postscript figure
Optimising Boltzmann codes for the Planck era
High precision measurements of the Cosmic Microwave Background (CMB)
anisotropies, as can be expected from the Planck satellite, will require
high-accuracy theoretical predictions as well. One possible source of
theoretical uncertainty is the numerical error in the output of the Boltzmann
codes used to calculate angular power spectra. In this work, we carry out an
extensive study of the numerical accuracy of the public Boltzmann code CAMB,
and identify a set of parameters which determine the error of its output. We
show that at the current default settings, the cosmological parameters
extracted from data of future experiments like Planck can be biased by several
tenths of a standard deviation for the six parameters of the standard
Lambda-CDM model, and potentially more seriously for extended models. We
perform an optimisation procedure that leads the code to achieve sufficient
precision while at the same time keeping the computation time within reasonable
limits. Our conclusion is that the contribution of numerical errors to the
theoretical uncertainty of model predictions is well under control -- the main
challenges for more accurate calculations of CMB spectra will be of an
astrophysical nature instead.Comment: 13 pages, 4 figure
Accretion-Powered Stellar Winds II: Numerical Solutions for Stellar Wind Torques
[Abridged] In order to explain the slow rotation observed in a large fraction
of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar
winds in torquing down the stars. For this mechanism to be effective, the
stellar winds need to have relatively high outflow rates, and thus would likely
be powered by the accretion process itself. Here, we use numerical
magnetohydrodynamical simulations to compute detailed 2-dimensional
(axisymmetric) stellar wind solutions, in order to determine the spin down
torque on the star. We explore a range of parameters relevant for CTTSs,
including variations in the stellar mass, radius, spin rate, surface magnetic
field strength, the mass loss rate, and wind acceleration rate. We also
consider both dipole and quadrupole magnetic field geometries.
Our simulations indicate that the stellar wind torque is of sufficient
magnitude to be important for spinning down a ``typical'' CTTS, for a mass loss
rate of yr. The winds are wide-angle,
self-collimated flows, as expected of magnetic rotator winds with moderately
fast rotation. The cases with quadrupolar field produce a much weaker torque
than for a dipole with the same surface field strength, demonstrating that
magnetic geometry plays a fundamental role in determining the torque. Cases
with varying wind acceleration rate show much smaller variations in the torque
suggesting that the details of the wind driving are less important. We use our
computed results to fit a semi-analytic formula for the effective Alfv\'en
radius in the wind, as well as the torque. This allows for considerable
predictive power, and is an improvement over existing approximations.Comment: Accepted for publication in Ap
Particle acceleration close to the supermassive black hole horizon: the case of M87
The radio galaxy M87 has recently been found to be a rapidly variable TeV
emitting source. We analyze the implications of the observed TeV
characteristics and show that it proves challenging to account for them within
conventional acceleration and emission models. We discuss a new pulsar-type
scenario for the origin of variable, very high energy (VHE) emission close to
the central supermassive black hole and show that magneto-centrifugally
accelerated electrons could efficiently Compton upscatter sub-mm ADAF disk
photons to the TeV regime, leading to VHE characteristics close to the observed
ones. This suggests, conversely, that VHE observations of highly under-luminous
AGNs could provide an important diagnostic tool for probing the conditions
prevalent in the inner accretion disk of these sources.Comment: 5 pages, one figure (typos corrected); based on presentation at "High
Energy Phenomena in Relativistic Outflows", Dublin, Sept. 2007; accepted for
publication in International Journal of Modern Physics
Caching and Interpolated Likelihoods: Accelerating Cosmological Monte Carlo Markov Chains
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our
focus is cosmological parameter estimation, but the algorithm is applicable to
any problem for which the likelihood surface is a smooth function of the free
parameters and computationally expensive to evaluate. We generate a high-order
interpolating polynomial for the log-likelihood using the first points gathered
by the Markov chains as a training set. This polynomial then accurately
computes the majority of the likelihoods needed in the latter parts of the
chains. We implement a simple version of this algorithm as a patch (InterpMC)
to CosmoMC and show that it accelerates parameter estimatation by a factor of
between two and four for well-converged chains. The current code is primarily
intended as a "proof of concept", and we argue that there is considerable room
for further performance gains. Unlike other approaches to accelerating
parameter fits, we make no use of precomputed training sets or special choices
of variables, and InterpMC is almost entirely transparent to the user.Comment: v2 Trivial Latex change. Source code:
http://easther.physics.yale.edu/interpmc.htm
Can Protostellar Jets Drive Supersonic Turbulence in Molecular Clouds?
Jets and outflows from young stellar objects are proposed candidates to drive
supersonic turbulence in molecular clouds. Here, we present the results from
multi-dimensional jet simulations where we investigate in detail the energy and
momentum deposition from jets into their surrounding environment and quantify
the character of the excited turbulence with velocity probability density
functions. Our study include jet--clump interaction, transient jets, and
magnetised jets. We find that collimated supersonic jets do not excite
supersonic motions far from the vicinity of the jet. Supersonic fluctuations
are damped quickly and do not spread into the parent cloud. Instead subsonic,
non-compressional modes occupy most of the excited volume. This is a generic
feature which can not be fully circumvented by overdense jets or magnetic
fields. Nevertheless, jets are able to leave strong imprints in their cloud
structure and can disrupt dense clumps. Our results question the ability of
collimated jets to sustain supersonic turbulence in molecular clouds.Comment: 33 pages, 18 figures, accepted by ApJ, version with high resolution
figures at:
http://www.ita.uni-heidelberg.de/~banerjee/publications/jet_paper.pd
Estimates of unresolved point sources contribution to WMAP 5
We present an alternative estimate of the unresolved point source
contribution to the WMAP temperature power spectrum based on current knowledge
of sources from radio surveys in the 1.4-90 GHz range. We implement a
stochastic extrapolation of radio point sources in the NRAO-VLA Sky Survey
(NVSS) catalog, from the original 1.4 GHz to the ~ 100 GHz frequency range
relevant for CMB experiments. With a bootstrap approach, we generate an
ensemble of realizations that provides the probability distribution for the
flux of each NVSS source at the final frequency. The predicted source counts
agree with WMAP results for S > 1 Jy and the corresponding sky maps correlate
with WMAP observed maps in Q-, V- and W- bands, for sources with flux S > 0.2
Jy. The low-frequency radio surveys found a steeper frequency dependence for
sources just below the WMAP nominal threshold than the one estimated by the
WMAP team. This feature is present in our simulations and translates into a
shift of 0.3-0.4 \sigma in the estimated value of the tilt of the power
spectrum of scalar perturbation, n_s, as well as \omega_c. This approach
demonstrates the use of external point sources datasets for CMB data analysis.Comment: 12 pages, 8 figures, to be published on MNRA
Assessing the levels of awareness among european citizens about the direct and indirect impacts of plastics on human health
There is an urgent need to assess European citizens' perspective regarding their plastic consumption and to evaluate their awareness of the direct and indirect effect of plastics on human health in order to influence current behavior trends. In this study, the evaluation has been cross-related with scientific facts, with the final aim of detecting the most recommendable paths in increasing human awareness, reducing plastic consumption, and consequently impacting human health. A statistical analysis of quantitative data, gathered from 1000 European citizens via an online survey in the period from May to June 2020, showed that a general awareness about the direct impact of plastic consumption and contamination (waste) on human health is high in Europe. However, only a few participants (from a higher educational group) were aware of the indirect negative effects that oil extraction and industrial production of plastic can have on human health. This finding calls for improved availability of this information to general public. Despite the participants' positive attitude toward active plastic reduction (61%), plastic consumption on a daily basis is still very high (86%). The most common current actions toward plastic reduction are plastic bag usage, reusage, or replacement with sustainable alternatives (e.g., textile bags) and selecting products with less plastic packaging. The participants showed important criticism toward the information available to the general public about plastics and health. This awareness is important since significant relation has been found between the available information and the participants' decisions on the actions they might undertake to reduce plastic consumption. The study clearly showed the willingness of the participants to take action, but they also requested to be strongly supported with joint efforts from government, policies, and marketing, defining it as the most successful way toward implementing these changes
On the geometrical origin of periodicity in blazar-type sources
Periodicities in blazar light curves may be related to helical trajectories
in extragalactic radio jets by differential Doppler boosting effects. We
consider ballistic and non-ballistic (i.e., radial) trajectories and discuss
three possible periodic driving mechanisms for the origin of helical jet paths,
namely, orbital motion in a binary black hole system (BBHS), jet precession,
and intrinsic jet rotation. It is shown that precessional-driven ballistic
motion is unlikely to result in observable periods of less than several tens of
years. We demonstrate that for non-ballistic helical motion the observed period
is generally strongly shortened relative to the real physical driving period
because of light-travel time effects. Internal jet rotation may thus account
for observed periods days. Periodicity due to
orbital-driven (non-ballistic) helical motion, on the other hand, is usually
constrained to periods of days, while Newtonian-driven
precession is unlikely to be responsible for periodicity on a timescale days but may well be associated with periods of yr.Comment: 10 pages, ApJ Letters in pres
One-dimensional collision carts computer model and its design ideas for productive experiential learning
We develop an Easy Java Simulation (EJS) model for students to experience the
physics of idealized one-dimensional collision carts. The physics model is
described and simulated by both continuous dynamics and discrete transition
during collision. In the field of designing computer simulations, we discuss
briefly three pedagogical considerations such as 1) consistent simulation world
view with pen paper representation, 2) data table, scientific graphs and
symbolic mathematical representations for ease of data collection and multiple
representational visualizations and 3) game for simple concept testing that can
further support learning. We also suggest using physical world setup to be
augmented complimentary with simulation while highlighting three advantages of
real collision carts equipment like tacit 3D experience, random errors in
measurement and conceptual significance of conservation of momentum applied to
just before and after collision. General feedback from the students has been
relatively positive, and we hope teachers will find the simulation useful in
their own classes. 2015 Resources added:
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3),
301 (2012); ISSN 0031-912
- …