16 research outputs found

    Analysis of NOVA-1 Doppler data

    Get PDF
    The intent is to prepare a set of Doppler tracking data for the NOVA-1 Satellite to be included in a data base of satellite tracking data. This data base is to be used in a solution for the gravity field of the Earth. This new gravity field model is needed so that the orbit of the proposed TOPEX (Ocean TOPography EXperiment) satellite can be determined accurately enough for the satellite's missions to be accomplished

    Analyses of the solid earth and ocean tidal perturbations on the orbits of the GEOS-1 and GEOS-2 satellites

    Get PDF
    The luni-solar tidal perturbations in the inclination of the GEOS-I and GEOS-II satellite orbits were analyzed for the solid Earth and ocean tide conditions. Precision reduced camera and TRANET Doppler observations spanning periods of over 600 days for each satellite were used to derive mean orbital elements. Perturbations due to the earth's gravity field, solar radiation pressure, and atmospheric drag were modelled, and the resulting inclination residuals were analyzed for tidal effects. The amplitudes of the observed total tidal effects were about 1.2 arc seconds (36 meters) in the inclination of GEOS-I and 4.5 arc seconds (135 meters) for GEOS-II. The solid earth tides were then modelled using earth tide measurements, earth rotation observations, and seismic data. The resulting inclination residuals were analyzed for ocean tide parameters. The derived parameters consist of one second degree coefficient and an accompanying phase angle in a spherical harmonic expansion of the ocean tidal potential for each tidal constituent. The results are presented

    Tidal perturbations on the satellite 1967-92A

    Get PDF
    The orbit of the 1967-92A satellite was studied to ascertain the extent to which tidal forces contribute to orbital perturbations. Parameters describing the ocean tide potential-in particular for the M2 and S2 constituents-were estimated. Since the ocean tide potential is less well known than the solid Earth tide, the ocean tide parameter estimation is based upon the use of a value of 0.3 for the solid Earth tide Love number in the orbit determination procedure. These tidal parameter values are in good agreement with those appearing in numerical models of the M2 and S2 tides derived from surface data

    Long-period contributions to the disturbing functions of the earth from the seventh, ninth, and eleventh zonal harmonics

    Get PDF
    Formulas for long period terms due to seventh, ninth, and eleventh zonal harmonics in disturbing function of earth - artificial earth satellit

    An improved model of the Earth's gravitational field: GEM-T1

    Get PDF
    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested
    corecore