12 research outputs found

    Precision digital mapping of endogenous and induced genomic DNA breaks by INDUCE-seq

    Get PDF
    Understanding how breaks form and are repaired in the genome depends on the accurate measurement of the frequency and position of DNA double strand breaks (DSBs). This is crucial for identification of a chemical’s DNA damage potential and for safe development of therapies, including genome editing technologies. Current DSB sequencing methods suffer from high background levels, the inability to accurately measure low frequency endogenous breaks and high sequencing costs. Here we describe INDUCE-seq, which overcomes these problems, detecting simultaneously the presence of low-level endogenous DSBs caused by physiological processes, and higher-level recurrent breaks induced by restriction enzymes or CRISPR-Cas nucleases. INDUCE-seq exploits an innovative NGS flow cell enrichment method, permitting the digital detection of breaks. It can therefore be used to determine the mechanism of DSB repair and to facilitate safe development of therapeutic genome editing. We further discuss how the method can be adapted to detect other genomic features

    Analysis of negative historical control group data from the in vitro micronucleus assay using TK6 cells.

    Get PDF
    The recent revisions of the Organisation for Economic Co-operation and Development (OECD) genetic toxicology test guidelines emphasize the importance of historical negative controls both for data quality and interpretation. The goal of a HESI Genetic Toxicology Technical Committee (GTTC) workgroup was to collect data from participating laboratories and to conduct a statistical analysis to understand and publish the range of values that are normally seen in experienced laboratories using TK6 cells to conduct the in vitro micronucleus assay. Data from negative control samples from in vitro micronucleus assays using TK6 cells from 13 laboratories were collected using a standard collection form. Although in some cases statistically significant differences can be seen within laboratories for different test conditions, they were very small. The mean incidence of micronucleated cells/1000 cells ranged from 3.2/1000 to 13.8/1000. These almost four-fold differences in micronucleus levels cannot be explained by differences in scoring method, presence or absence of exogenous metabolic activation (S9), length of treatment, presence or absence of cytochalasin B or different solvents used as vehicles. The range of means from the four laboratories using flow cytometry methods (3.7-fold: 3.5-12.9 micronucleated cells/1000 cells) was similar to that from the nine laboratories using other scoring methods (4.3-fold: 3.2-13.8 micronucleated cells/1000 cells). No laboratory could be identified as an outlier or as showing unacceptably high variability. Quality Control (QC) methods applied to analyse the intra-laboratory variability showed that there was evidence of inter-experimental variability greater than would be expected by chance (i.e. over-dispersion). However, in general, this was low. This study demonstrates the value of QC methods in helping to analyse the reproducibility of results, building up a 'normal' range of values, and as an aid to identify variability within a laboratory in order to implement processes to maintain and improve uniformity

    Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However, the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study. Here, we develop a feeder-free, long-term, three-dimensional (3D) culture technique for hAT2 cells derived from primary human lung tissue and investigate infection response to SARS-CoV-2. By imaging-based analysis and single-cell transcriptome profiling, we reveal rapid viral replication and the increased expression of interferon-associated genes and proinflammatory genes in infected hAT2 cells, indicating a robust endogenous innate immune response. Further tracing of viral mutations acquired during transmission identifies full infection of individual cells effectively from a single viral entry. Our study provides deep insights into the pathogenesis of SARS-CoV-2 and the application of defined 3D hAT2 cultures as models for respiratory diseases

    A cross-industry survey on photosafety evaluation of pharmaceuticals after implementation of ICH S10.

    No full text
    A cross-industry survey was conducted by EFPIA/IQ DruSafe in 2018 to provide information on photosafety evaluation of pharmaceuticals after implementation of ICH S10. This survey focused on the strategy utilized for photosafety risk assessment, the design of nonclinical (in vitro and in vivo) and clinical evaluations, the use of exposure margins in risk assessment, and regulatory interactions. The survey results indicated that a staged approach for phototoxicity assessment has been widely accepted by regulatory authorities globally. The OECD-based 3T3 NRU Phototoxicity Test is the most frequently used in vitro approach. Modifications to this assay suggested by ICH S10 are commonly applied. For in-vitro-positives, substantial margins from in vitro IC50 values under irradiation to Cmax (clinical) have enabled further development without the need for additional photosafety data. In vivo phototoxicity studies typically involve dosing rodents and exposing skin and eyes to simulated sunlight, and subsequently evaluating at least the skin for erythema and edema. However, no formal guidelines exist and protocols are less standardized across companies. A margin-of-safety approach (based on Cmax at NOAEL) has been successfully applied to support clinical development. Experience with dedicated clinical phototoxicity studies was limited, perhaps due to effective de-risking approaches employed based on ICH S10

    In vitro genotoxicity test approaches with better predictivity: Summary of an IWGT workshop

    No full text
    Improving current in vitro genotoxicity tests is an ongoing task for genetic toxicologists. Further, the question on how to deal with positive in vitro results that are demonstrated to not predict genotoxicity or carcinogenicity potential in rodents or humans is a challenge. These two aspects were addressed at the 5th International Workshop on Genotoxicity Testing (IWGT) held in Basel, Switzerland, on August 17 Âż 19, 2009. The first objective of the working group was to review data on the response of the cell lines commonly used for mammalian cell tests, and to consider whether it was possible to make recommendations on the use of any particular cell line. The second objective of the working group was to provide evaluations on promising new approaches. Results obtained in rodent cell lines with impaired p53 function (V79, CHL and CHO cells) and human p53-competent cells (peripheral blood lymphocytes, TK6 and HepG2 cells) suggest that a reduction in the percentage of non-relevant positive results for carcinogenicity prediction can be achieved by careful selection of the mammalian cells used without decreasing the sensitivity of the assays. These findings were confirmed in other laboratories. Therefore, this IWGT working group suggests using p53-competent- preferably human - cells in in vitro MN- or CA-tests. It was further suggested that the use of the hepatoma cell line HepaRG for genotoxicity testing is promising since these cells possess better phase I and II metabolizing potential compared to cell lines commonly used in this area and may overcome the need for the addition of S9. The IWGT working group further recommends adherence to good cell culture practice, characterization of all new cells, checking regularly for genetic drift, and working with low passage stocks. It was emphasized that a genotoxicity cell bank with fully characterized stocks of all commonly used cells would be very valuable. Regarding promising new approaches, the IWGT working group agreed that in vitro reconstructed skin models, once validated, will be useful to follow up on positive results from standard in vitro assays for dermally applied compounds since they resemble the properties of human skin (barrier function, metabolism). While the reconstructed skin micronucleus assay has been shown to be further advanced, there was also consensus that the Comet assay should be further evaluated due to its independence from cell proliferation and coverage of a wider spectrum of DNA damage. Finally, the IWGT working group recommends evaluating further the metabolic capacity of the reconstructed skin models.JRC.I.2-Validation of Alternative Method

    Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the cause of a present pandemic, infects human lung alveolar type 2 (hAT2) cells. Characterizing pathogenesis is crucial for developing vaccines and therapeutics. However. the lack of models mirroring the cellular physiology and pathology of hAT2 cells limits the study. Here, we develop a feeder-free, long-term, three-dimensional (3D) culture technique for hAT2 cells derived from primary human lung tissue and investigate infection response to SARS-CoV-2. By imaging-based analysis and single-cell transcriptome profiling, we reveal rapid viral replication and the increased expression of interferon-associated genes and proinflammatory genes in infected hAT2 cells, indicating a robust endogenous innate immune response. Further tracing of viral mutations acquired during transmission identifies full infection of individual cells effectively from a single viral entry. Our study provides deep insights into the pathogenesis of SARS-CoV-2 and the application of defined 3D hAT2 cultures as models for respiratory diseases.11Nsciescopu

    Discovery of benzothiazoles as antimycobacterial agents: Synthesis, structure-activity relationships and binding studies with Mycobacterium tuberculosis decaprenylphosphoryl-beta-D-ribose 2 '-oxidase

    No full text
    We report the discovery of benzothiazoles, a novel anti-mycobacterial series, identified from a whole cell based screening campaign. Benzothiazoles exert their bactericidal activity against Mycobacterium tuberculosis (Mtb) through potent inhibition of decaprenylphosphoryl-beta-D-ribose 2'-oxidase (DprE1), the key enzyme involved in arabinogalactan synthesis. Specific target linkage and mode of binding were established using co-crystallization and protein mass spectrometry studies. Most importantly, the current study provides insights on the utilization of systematic medicinal chemistry approaches to mitigate safety liabilities while improving potency during progression from an initial genotoxic hit, the benzothiazole N-oxides (BTOs) to the lead-like AMES negative, crowded benzothiazoles (cBTs). These findings offer opportunities for development of safe clinical candidates against tuberculosis. The design strategy adopted could find potential application in discovery of safe drugs in other therapy areas too. (c) 2015 Elsevier Ltd. All rights reserved

    The 3T3 neutral red uptake phototoxicity test:practical experience and implications for phototoxicity testing - the report of an ECVAM-EFPIA workshop

    No full text
    This is the report from the “ECVAM-EFPIA workshop on 3T3 NRU Phototoxicity Test: Practical Experience and Implications for Phototoxicity Testing”, jointly organized by ECVAM and EFPIA and held on the 25-27 October 2010 in Somma Lombardo, Italy. The European Centre for the Validation of Alternative Methods (ECVAM) was established in 1991 within the European Commission Joint Research, based on a Communication from the European Commission1. The main objective of ECVAM is to promote the scientific and regulatory acceptance of alternative methods which are of importance to the biosciences and which reduce, refine and replace the use of laboratory animals. The European Federation of Pharmaceuticals Industries and Association (EFPIA) represent the pharmaceutical industry operating in Europe. Through its direct membership of 31 national associations and 40 leading pharmaceutical companies, EFPIA is the voice on the EU scene of 2,200 companies committed to researching, developing and bringing to patients new medicines that improve health and the quality of life around the world. The workshop, co-chaired by Joachim Kreysa (ECVAM) and Phil Wilcox (GSK, EFPIA) involved thirty-five experts from academia, regulatory authorities and industry that were invited to contribute with their experiences in the field. The main objectives of the workshop were: - to present 'in use' experience of the pharmaceutical industry with the 3T3 Neutral Red Uptake Phototoxicity Test (3T3 NRU-PT), - to discuss why it differs from the results in the original validation exercise, - to discuss technical issues and - consider ways to improve the usability of the 3T3 NRU-PT for (non-topical) pharmaceuticals, e.g. by modifying technical aspects of the assay or adjusting the criteria used to classify for a positive response. During the workshop, the assay methodology was reviewed by comparing the OECD Test Guideline with the actual protocol used, data from EFPIA and JPMA ‘surveys’ were presented and possible reasons for the outcomes were discussed. Experts from cosmetics and pharmaceutical industries presented their experience with the 3T3 NRU-PT and evidence was presented for phototoxic clinical symptoms that could be linked to certain relevant molecules. Brainstorming sessions discussed if the 3T3 NRU-PT needed to be improved and whether alternatives to the 3T3 NRU-PT exist. Finally, the view point from EU and US regulators was also presented. In the final session, the conclusions of the meeting were summarised with action points. It was concluded that the 3T3 NRU-PT is a hazard-based assay with a high level of sensitivity. It is relevant and an accepted test that correctly identifies non-phototoxic materials. However, positive results in the 3T3 NRU-PT often do not translate into a clinical phototoxicity risk. Possible ways to improve the practical use of this assay include: (i.) implementation of absorption criteria as a means to reduce the number of materials tested, (ii.) limit the highest concentration tested, and (iii.) consider modifying the criteria used to identify “positives” in the test.JRC.I.5-Systems Toxicolog
    corecore