9 research outputs found

    RÎle du systÚme nerveux sympathique dans la physiopathologie du syndrome métabolique (approche expérimentale)

    No full text
    STRASBOURG ILLKIRCH-Pharmacie (672182101) / SudocSudocFranceF

    A single-shot Lassa vaccine induces long-term immunity and protects cynomolgus monkeys against heterologous strains

    No full text
    Acknowledgments: We thank P. Regnard (Silabe, Strasbourg) for medical care given to the monkeys. We thank S. Mundweiller, S. Godard, E. Moissonnier, D. Thomas, S. MĂ©ly, B. Labrosse, D. Pannetier, and C. LĂ©culier (P4 INSERM–Jean MĂ©rieux, US003, INSERM) for assistance in conducting the BSL-4 experiments. We are grateful to G. Fourcaud and B. Lafoux (Institut Pasteur, CIRI, Lyon) for technical help with histological studies. We thank S. Becker for providing us with the Josiah strain and T. G. Ksiasek, P. E. Rollin, and P. Jahrling for the LASV monoclonal antibodies. We also thank L. Branco (Zalgen Labs) for providing recombinant proteins. We are grateful to THEMIS Bioscience GmbH, a wholly owned subsidiary of Merck & Co. Inc. (E. Tauber, A. Kort, K. Ramsauer, S. Schrauf, Y. Tomberger, and R. Tschismarov), to the Coalition for Epidemic Preparedness and Innovations (R. Hatchett, G. Thiry, and M. Saville), and to C. Gerke (Department of Innovation Development, Institut Pasteur) for invaluable supportInternational audienceA safe and protective Lassa virus vaccine is crucially needed in Western Africa to stem the recurrent outbreaks of Lassa virus infections in Nigeria and the emergence of Lassa virus in previously unaffected countries, such as Benin and Togo. Major challenges in developing a Lassa virus vaccine include the high diversity of circulating strains and their reemergence from 1 year to another. To address each of these challenges, we immunized cynomolgus monkeys with a measles virus vector expressing the Lassa virus glycoprotein and nucleoprotein of the prototypic Lassa virus strain Josiah (MeV-NP). To evaluate vaccine efficacy against heterologous strains of Lassa virus, we challenged the monkeys a month later with heterologous strains from lineage II or lineage VII, finding that the vaccine was protective against these strains. A second cohort of monkeys was challenged 1 year later with the homologous Josiah strain, finding that a single dose of MeV-NP was sufficient to protect all vaccinated monkeys. These studies demonstrate that MeV-NP can generate both long-lasting immune responses and responses that are able to protect against diverse strains of Lassa virus

    Vaccines inducing immunity to Lassa virus glycoprotein and nucleoprotein protect macaques after a single shot

    No full text
    International audienceLassa fever is a major threat in Western Africa. The large number of people living at risk for this disease calls for the development of a vaccine against Lassa virus (LASV). We generated live-attenuated LASV vaccines based on measles virus and Mopeia virus platforms and expressing different LASV antigens, with the aim to develop a vaccine able to protect after a single shot. We compared the efficacy of these vaccines against LASV in cynomolgus monkeys. The vaccines were well tolerated and protected the animals from LASV infection and disease after a single immunization but with varying efficacy. Analysis of the immune responses showed that complete protection was associated with robust secondary T cell and antibody responses against LASV. Transcriptomic and proteomic analyses showed an early activation of innate immunity and T cell priming after immunization with the most effective vaccines, with changes detectable as early as 2 days after immunization. The most efficacious vaccine candidate, a measles vector simultaneously expressing LASV glycoprotein and nucleoprotein, has been selected for further clinical evaluation

    A MOPEVAC multivalent vaccine induces sterile protection against New World arenaviruses in non-human primates

    No full text
    International audiencePathogenic New World arenaviruses (NWAs) cause haemorrhagic fevers and can have high mortality rates, as shown in outbreaks in South America. Neutralizing antibodies (Abs) are critical for protection from NWAs. Having shown that the MOPEVAC vaccine, based on a hyperattenuated arenavirus, induces neutralizing Abs against Lassa fever, we hypothesized that expression of NWA glycoproteins in this platform might protect against NWAs. Cynomolgus monkeys immunized with MOPEVACMAC, targeting Machupo virus, prevented the lethality of this virus and induced partially NWA cross-reactive neutralizing Abs. We then developed the pentavalent MOPEVACNEW vaccine, expressing glycoproteins from all pathogenic South American NWAs. Immunization of cynomolgus monkeys with MOPEVACNEW induced neutralizing Abs against five NWAs, strong innate followed by adaptive immune responses as detected by transcriptomics and provided sterile protection against Machupo virus and the genetically distant Guanarito virus. MOPEVACNEW may thus be efficient to protect against existing and potentially emerging NWAs

    A MOPEVAC multivalent vaccine induces sterile protection against New World arenaviruses in non-human primates

    No full text
    International audiencePathogenic New World arenaviruses (NWAs) cause haemorrhagic fevers and can have high mortality rates, as shown in outbreaks in South America. Neutralizing antibodies (Abs) are critical for protection from NWAs. Having shown that the MOPEVAC vaccine, based on a hyperattenuated arenavirus, induces neutralizing Abs against Lassa fever, we hypothesized that expression of NWA glycoproteins in this platform might protect against NWAs. Cynomolgus monkeys immunized with MOPEVACMAC, targeting Machupo virus, prevented the lethality of this virus and induced partially NWA cross-reactive neutralizing Abs. We then developed the pentavalent MOPEVACNEW vaccine, expressing glycoproteins from all pathogenic South American NWAs. Immunization of cynomolgus monkeys with MOPEVACNEW induced neutralizing Abs against five NWAs, strong innate followed by adaptive immune responses as detected by transcriptomics and provided sterile protection against Machupo virus and the genetically distant Guanarito virus. MOPEVACNEW may thus be efficient to protect against existing and potentially emerging NWAs

    Rapid protection induced by a single-shot Lassa vaccine in male cynomolgus monkeys

    No full text
    International audienceLassa fever hits West African countries annually in the absence of licensed vaccine to limit the burden of this viral hemorrhagic fever. We previously developed MeV-NP, a single-shot vaccine protecting cynomolgus monkeys against divergent strains one month or more than a year before Lassa virus infection. Given the limited dissemination area during outbreaks and the risk of nosocomial transmission, a vaccine inducing rapid protection could be useful to protect exposed people during outbreaks in the absence of preventive vaccination. Here, we test whether the time to protection can be reduced after immunization by challenging measles virus pre-immune male cynomolgus monkeys sixteen or eight days after a single shot of MeV-NP. None of the immunized monkeys develop disease and they rapidly control viral replication. Animals immunized eight days before the challenge are the best controllers, producing a strong CD8 T-cell response against the viral glycoprotein. A group of animals was also vaccinated one hour after the challenge, but was not protected and succumbed to the disease as the control animals. This study demonstrates that MeV-NP can induce a rapid protective immune response against Lassa fever in the presence of MeV pre-existing immunity but can likely not be used as therapeutic vaccine

    Subcutaneous Administration of a Zwitterionic Chitosan‐Based Hydrogel for Controlled Spatiotemporal Release of Monoclonal Antibodies

    No full text
    International audienceAbstract Subcutaneous (SC) administration of monoclonal antibodies (mAbs) is a proven strategy for improving therapeutic outcomes and patient compliance. The current FDA‐/EMA‐approved enzymatic approach, utilizing recombinant human hyaluronidase (rHuPH20) to enhance mAbs SC delivery, involves degrading the extracellular matrix's hyaluronate to increase tissue permeability. However, this method lacks tunable release properties, requiring individual optimization for each mAb. Seeking alternatives, physical polysaccharide hydrogels emerge as promising candidates due to their tunable physicochemical and biodegradability features. Unfortunately, none have demonstrated simultaneous biocompatibility, biodegradability, and controlled release properties for large proteins (≄150 kDa) after SC delivery in clinical settings. Here, a novel two‐component hydrogel comprising chitosan and chitosan@DOTAGA is introduced that can be seamlessly mixed with sterile mAbs formulations initially designed for intravenous (IV) administration, repurposing them as novel tunable SC formulations. Validated in mice and nonhuman primates (NHPs) with various mAbs, including trastuzumab and rituximab, the hydrogel exhibited biodegradability and biocompatibility features. Pharmacokinetic studies in both species demonstrated tunable controlled release, surpassing the capabilities of rHuPH20, with comparable parameters to the rHuPH20+mAbs formulation. These findings signify the potential for rapid translation to human applications, opening avenues for the clinical development of this novel SC biosimilar formulation
    corecore