49 research outputs found

    Radionuclide geochemistry: solubility and thermodynamics in a HLW repository

    Get PDF
    Deep geological disposal is the internationally favoured option to isolate high-level nuclear waste (HLW) from the biosphere and to minimise the potential radiological risk for future generations. Potentially contacting aqueous solutions such as groundwater may, however, lead to the corrosion of the solid casks containing the nuclear waste, and the formation of aqueous radionuclide systems in the near-field of the emplacement rooms. As dissolved species, radionuclides can in principle further migrate into the far-field and finally reach the biosphere on medium and long timescales. Like all chemical species, the radionuclides are subject to fundamental (geo)chemical laws. Relevant reactions that control retention and release, and hence, the migration behaviour and fate of radionuclides in a repository, are solubility equilibria, formation of soluble complexes, redox reactions, sorption on and incorporation into mineral surfaces, transport phenomena etc. These processes depend directly on the (geo)chemical boundary conditions, and, consequently, can differ greatly for various host rock systems such as clay rock, rock salt, and crystalline rock. Many of the radionuclides in HLW are heavy metals that are sparingly soluble under various repository-relevant conditions, e.g. actinides, lanthanides, transition metals, so that only partial dissolution (mobilisation) from the solid waste matrices is expected. This underlines the importance of evaluating the radionuclide solubility within a geochemically based safety assessment for repositories as it provides reliable upper-limit concentrations of the mobile, potentially migrating radionuclide fraction in the near-field. In this contribution, we discuss relevant aspects related to the topic radionuclide solubility and thermodynamics in a HLW repository. This includes a summary of recent laboratory studies on the solubility behaviour and speciation of key radionuclides in repository-relevant solutions, which are an important basis for obtaining (geo)chemical information and models, and the corresponding fundamental thermodynamic constants on aqueous radionuclide systems. National and international thermodynamic database projects, where quality-assured thermodynamic data (solubility products, complex formation constants, and ion-interaction parameters) are evaluated and compiled, e.g. the Nuclear Energy Agency Thermochemical Database (http://www.oecd-nea.org, last access: 1 November 2021) or the Thermodynamic Reference Database (http://www.thereda.de, last access: 1 November 2021), are highlighted and the main remaining uncertainties discussed. The experimental information and the quantitative thermodynamic data are applied within a generic case study to demonstrate the impact of different geochemical solution conditions representing different host rock systems considered as HLW repositories in Germany on the solubility and speciation of selected radionuclides

    Intercomparison of Redox determination methods on designed and near-natural aqueous systems : FP 7 EURATOM Collaborative Project "Redox Phenomena Controlling Systems" (KIT Scientific Reports ; 7572)

    Get PDF
    The outcome of the RECOSY Intercomparison Exercise (ICE), 16-20 November 2009, KIT-INE, Karlsruhe, conducted within the EURATOM FP7 framework is presented. The comparison of different redox determination methods allow to identify critical issues and provide the basis for more confidence in redox determinations relevant for nuclear waste disposal. Recommendations on redox measurements are given in the report and future activities proposed to further improve the reliability of redox measurements

    Was the Progenitor of the Sagittarius Stream a Disc Galaxy?

    Full text link
    We use N-body simulations to explore the possibility that the Sagittarius (Sgr) dwarf galaxy was originally a late-type, rotating disc galaxy, rather than a non-rotating, pressure-supported dwarf spheroidal galaxy, as previously thought. We find that bifurcations in the leading tail of the Sgr stream, similar to those detected by the SDSS survey, naturally arise in models where the Sgr disc is misaligned with respect to the orbital plane. Moreover, we show that the internal rotation of the progenitor may strongly alter the location of the leading tail projected on the sky, and thus affect the constraints on the shape of the Milky Way dark matter halo that may be derived from modelling the Sgr stream. Our models provide a clear, easily-tested prediction: although tidal mass stripping removes a large fraction of the original angular momentum in the progenitor dwarf galaxy, the remnant core should still rotate with a velocity amplitude ~20 km/s that could be readily detected in future, wide-field kinematic surveys of the Sgr dwarf.Comment: Letter accepted by MNRAS. N-body model animations can be downloaded from http://www.ast.cam.ac.uk/~jorpega/files/sgr
    corecore