211 research outputs found

    An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes

    Get PDF
    We describe an improved, efficient and reliable method for the vapour-phase silanization of multi-barreled, ion-selective microelectrodes of which the silanized barrel(s) are to be filled with neutral liquid ion-exchanger (LIX). The technique employs a metal manifold to exclusively and simultaneously deliver dimethyldichlorosilane to only the ion-selective barrels of several multi-barreled microelectrodes. Compared to previously published methods the technique requires fewer procedural steps, less handling of individual microelectrodes, improved reproducibility of silanization of the selected microelectrode barrels and employs standard borosilicate tubing rather than the less-conventional theta-type glass. The electrodes remain stable for up to 3 weeks after the silanization procedure. The efficacy of a double-barreled electrode containing a proton ionophore in the ion-selective barrel is demonstrated in situ in the leaf apoplasm of pea (Pisum) and sunflower (Helianthus). Individual leaves were penetrated to depth of ~150 μm through the abaxial surface. Microelectrode readings remained stable after multiple impalements without the need for a stabilizing PVC matrix

    A quantum light-emitting diode for the standard telecom window around 1,550 nm.

    Get PDF
    Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware

    Universal growth scheme for quantum dots with low fine-Structure splitting at various emission wavelengths

    Get PDF
    Efficient sources of individual pairs of entangled photons are required for quantum networks to operate using fibre optic infrastructure. Entangled light can be generated by quantum dots (QDs) with naturally small fine-structure-splitting (FSS) between exciton eigenstates. Moreover, QDs can be engineered to emit at standard telecom wavelengths. To achieve sufficient signal intensity for applications, QDs have been incorporated into 1D optical microcavities. However, combining these properties in a single device has so far proved elusive. Here, we introduce a growth strategy to realise QDs with small FSS in the conventional telecom band, and within an optical cavity. Our approach employs droplet-epitaxy of InAs quantum dots on (001) substrates. We show the scheme improves the symmetry of the dots by 72%. Furthermore, our technique is universal, and produces low FSS QDs by molecular beam epitaxy on GaAs emitting at ~900nm, and metal-organic vapour phase epitaxy on InP emitting at 1550 nm, with mean FSS 4x smaller than for Stranski-Krastanow QDs

    Growth scheme for quantum dots with low fine structure splitting at telecom wavelengths (Conference Presentation)

    Get PDF
    Quantum dots based on InAs/InP hold the promise to deliver entangled photons with wavelength suitable for the standard telecom window around 1550 nm, which makes them predestined to be used in future quantum networks applications based on existing fiber optics infrastructure. A prerequisite for the generation of such entangled photons is a small fine structure splitting (FSS) in the quantum dot excitonic eigenstates, as well as the ability to integrate the dot into photonic structures to enhance and direct its emission. Using optical spectroscopy, we show that a growth strategy based on droplet epitaxy can simultaneously address both issues. Contrary to the standard Stranski-Krastanow technique, droplet epitaxy dots do not rely on material strains during growth, which results in a drastic improvement in dot symmetry. As a consequence, the average exciton FSS is reduced by more than a factor 4, which in fact makes all the difference between easily finding a dot with the required FSS and not finding one at all. Furthermore, we demonstrate that droplet epitaxy dots can be grown on the necessary surface (001) for high quality optical microcavities, which increases dot emission count rates by more than a factor of five. Together, these properties make droplet epitaxy quantum dots readily suitable for the generation of entangled photons at telecom wavelengths

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
    • …
    corecore