2,318 research outputs found

    L1-determined ideals in group algebras of exponential Lie groups

    Full text link
    A locally compact group GG is said to be ∗\ast-regular if the natural map \Psi:\Prim C^\ast(G)\to\Prim_{\ast} L^1(G) is a homeomorphism with respect to the Jacobson topologies on the primitive ideal spaces \Prim C^\ast(G) and \Prim_{\ast} L^1(G). In 1980 J. Boidol characterized the ∗\ast-regular ones among all exponential Lie groups by a purely algebraic condition. In this article we introduce the notion of L1L^1-determined ideals in order to discuss the weaker property of primitive ∗\ast-regularity. We give two sufficient criteria for closed ideals II of C∗(G)C^\ast(G) to be L1L^1-determined. Herefrom we deduce a strategy to prove that a given exponential Lie group is primitive ∗\ast-regular. The author proved in his thesis that all exponential Lie groups of dimension ≤7\le 7 have this property. So far no counter-example is known. Here we discuss the example G=B5G=B_5, the only critical one in dimension ≤5\le 5

    Comprehensive molecular pharmacology screening reveals potential new receptor interactions for clinically relevant opioids

    Get PDF
    Most clinically used opioids are thought to induce analgesia through activation of the mu opioid receptor (MOR). However, disparities have been observed between the efficacy of opioids in activating the MOR in vitro and in inducing analgesia in vivo. In addition, some clinically used opioids do not produce cross-tolerance with each other, and desensitization produced in vitro does not match tolerance produced in vivo. These disparities suggest that some opioids could be acting through other targets in vivo, but this has not been comprehensively tested. We thus screened 9 clinically relevant opioids (buprenorphine, hydrocodone, hydromorphone, morphine, 0-desmethyl-tramadol, oxycodone, oxymorphone, tapentadol, tramadol) against 9 pain-related receptor targets (MOR, delta opioid receptor [DOR], kappa opioid receptor [KOR], nociceptin receptor [NOP], cannabinoid receptor type 1 [CB1], sigma-1 receptor [al R], and the monoamine transporters [NET/SERT/DAT]) expressed in cells using radioligand binding and functional activity assays. We found several novel interactions, including monoamine transporter activation by buprenorphine and al R binding by hydrocodone and tapentadol. Tail flick anti-nociception experiments with CD-1 mice demonstrated that the monoamine transporter inhibitor duloxetine selectively promoted buprenorphine anti-nociception while producing no effects by itself or in combination with the most MOR-selective drug oxymorphone, providing evidence that these novel interactions could be relevant in vivo. Our findings provide a comprehensive picture of the receptor interaction profiles of clinically relevant opioids, which has not previously been performed. Our findings also suggest novel receptor interactions for future investigation that could explain some of the disparities observed between opioid performance in vitro and in vivo.Depomed, Inc.; University of ArizonaOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Recoil Correction to Hydrogen Energy Levels: A Revision

    Full text link
    Recent calculations of the order (Z\alpha)^4(m/M)Ry pure recoil correction to hydrogen energy levels are critically revised. The origins of errors made in the previous works are elucidated. In the framework of a successive approach, we obtain the new result for the correction to S levels. It amounts to -16.4 kHz in the ground state and -1.9 kHz in the 2S state.Comment: 15 pages, Latex, no figure

    General Framework for phase synchronization through localized sets

    Full text link
    We present an approach which enables to identify phase synchronization in coupled chaotic oscillators without having to explicitly measure the phase. We show that if one defines a typical event in one oscillator and then observes another one whenever this event occurs, these observations give rise to a localized set. Our result provides a general and easy way to identify PS, which can also be used to oscillators that possess multiple time scales. We illustrate our approach in networks of chemically coupled neurons. We show that clusters of phase synchronous neurons may emerge before the onset of phase synchronization in the whole network, producing a suitable environment for information exchanging. Furthermore, we show the relation between the localized sets and the amount of information that coupled chaotic oscillator can exchange

    On the Complex Network Structure of Musical Pieces: Analysis of Some Use Cases from Different Music Genres

    Full text link
    This paper focuses on the modeling of musical melodies as networks. Notes of a melody can be treated as nodes of a network. Connections are created whenever notes are played in sequence. We analyze some main tracks coming from different music genres, with melodies played using different musical instruments. We find out that the considered networks are, in general, scale free networks and exhibit the small world property. We measure the main metrics and assess whether these networks can be considered as formed by sub-communities. Outcomes confirm that peculiar features of the tracks can be extracted from this analysis methodology. This approach can have an impact in several multimedia applications such as music didactics, multimedia entertainment, and digital music generation.Comment: accepted to Multimedia Tools and Applications, Springe

    Positronium S state spectrum: analytic results at O(m alpha^6)

    Full text link
    We present an analytic calculation of the O(m alpha^6) recoil and radiative recoil corrections to energy levels of positronium nS states and their hyperfine splitting. A complete analytic formula valid to O(m alpha^6) is given for the spectrum of S states. Technical aspects of the calculation are discussed in detail. Theoretical predictions are given for various energy intervals and compared with experimental results.Comment: 29 pages, revte

    Evolving networks with disadvantaged long-range connections

    Full text link
    We consider a growing network, whose growth algorithm is based on the preferential attachment typical for scale-free constructions, but where the long-range bonds are disadvantaged. Thus, the probability to get connected to a site at distance dd is proportional to d−αd^{-\alpha}, where α\alpha is a tunable parameter of the model. We show that the properties of the networks grown with α<1\alpha <1 are close to those of the genuine scale-free construction, while for α>1\alpha >1 the structure of the network is vastly different. Thus, in this regime, the node degree distribution is no more a power law, and it is well-represented by a stretched exponential. On the other hand, the small-world property of the growing networks is preserved at all values of α\alpha .Comment: REVTeX, 6 pages, 5 figure

    Deficiency of Sphingosine-1-phosphate Lyase Impairs Lysosomal Metabolism of the Amyloid Precursor Protein

    Get PDF
    Progressive accumulation of the amyloid β protein in extracellular plaques is a neuropathological hallmark of Alzheimer disease. Amyloid β is generated during sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. In addition to the proteolytic processing by secretases, APP is also metabolized by lysosomal proteases. Here, we show that accumulation of intracellular sphingosine-1-phosphate (S1P) impairs the metabolism of APP. Cells lacking functional S1P-lyase, which degrades intracellular S1P, strongly accumulate full-length APP and its potentially amyloidogenic C-terminal fragments (CTFs) as compared with cells expressing the functional enzyme. By cell biological and biochemical methods, we demonstrate that intracellular inhibition of S1P-lyase impairs the degradation of APP and CTFs in lysosomal compartments and also decreases the activity of γ-secretase. Interestingly, the strong accumulation of APP and CTFs in S1P-lyase-deficient cells was reversed by selective mobilization of Ca(2+) from the endoplasmic reticulum or lysosomes. Intracellular accumulation of S1P also impairs maturation of cathepsin D and degradation of Lamp-2, indicating a general impairment of lysosomal activity. Together, these data demonstrate that S1P-lyase plays a critical role in the regulation of lysosomal activity and the metabolism of APP
    • …
    corecore