66 research outputs found

    Complement-mediated kidney diseases

    Get PDF
    It has long been known that the complement cascade is activated in various forms of glomerulonephritis. In many of these diseases, immune-complexes deposit in the glomeruli and activate the classical pathway. Researchers have also identified additional mechanisms by which complement is activated in the kidney, including diseases in which the alternative and lectin pathways are activated. The kidney appears to be particularly susceptible to activation of the alternative pathway, and this pathway has been implicated as a primary driver of atypical hemolytic uremic syndrome, C3 glomerulopathy, anti-neutrophil cytoplasmic antibody-associated vasculitis, as well as some forms of immune-complex glomerulonephritis. In this paper we review the shared and distinct mechanisms by which complement is activated in these different diseases. We also review the opportunities for using therapeutic complement inhibitors to treat kidney diseases

    Complement modulation in renal replacement therapy:from dialysis to renal transplantation

    Get PDF
    Het huidige promotieonderzoek ging over een onderdeel van het immuunsysteem, genaamd het complement systeem en of het onderdrukken van dit systeem mogelijke voordelen heeft voor nierpatiënten die dialyse ondergaan of een niertransplantatie krijgen

    Complement modulation in renal replacement therapy:from dialysis to renal transplantation

    Get PDF

    The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases?

    Get PDF
    Primary IgA nephropathy (IgAN) is a leading cause of chronic kidney disease and kidney failure for which there is no disease-specific treatment. However, this could change, since novel therapeutic approaches are currently being assessed in clinical trials, including complement-targeting therapies. An improved understanding of the role of the lectin and the alternative pathway of complement in the pathophysiology of IgAN has led to the development of these treatment strategies. Recently, in a phase 2 trial, treatment with a blocking antibody against mannose-binding protein-associated serine protease 2 (MASP-2, a crucial enzyme of the lectin pathway) was suggested to have a potential benefit for IgAN. Now in a phase 3 study, this MASP-2 inhibitor for the treatment of IgAN could mark the start of a new era of complement therapeutics where common diseases can be treated with these drugs. The clinical development of complement inhibitors requires a better understanding by physicians of the biology of complement, the pathogenic role of complement in IgAN, and complement-targeted therapies. The purpose of this review is to provide an overview of the role of complement in IgAN, including the recent discovery of new mechanisms of complement activation and opportunities for complement inhibitors as the treatment of IgAN

    A functional TGFB1 polymorphism in the donor associates with long-term graft survival after kidney transplantation

    Get PDF
    BACKGROUND: Improvement of long-term outcomes in kidney transplantation remains one of the most pressing challenges, yet drug development is stagnating. Human genetics offers an opportunity for much-needed target validation in transplantation. Conflicting data exist about the effect of transforming growth factor-beta 1 (TGF-β1) on kidney transplant survival, since TGF-β1 has pro-fibrotic and protective effects. We investigated the impact of a recently discovered functional TGFB1 polymorphism on kidney graft survival. METHODS: We performed an observational cohort study analysing recipient and donor DNA in 1271 kidney transplant pairs from the University Medical Centre Groningen in The Netherlands, and associated a low-producing TGFB1 polymorphism (rs1800472-C > T) with 5-, 10- and 15-year death-censored kidney graft survival. RESULTS: Donor genotype frequencies of rs1800472 in TGFB1 differed significantly between patients with and without graft loss (P = 0.014). Additionally, the low-producing TGFB1 polymorphism in the donor was associated with an increased risk of graft loss following kidney transplantation (hazard ratio = 2.12 for the T-allele; 95% confidence interval 1.18–3.79; P = 0.012). The incidence of graft loss within 15 years of follow-up was 16.4% in the CC-genotype group and 31.6% in the CT-genotype group. After adjustment for transplant-related covariates, the association between the TGFB1 polymorphism in the donor and graft loss remained significant. In contrast, there was no association between the TGFB1 polymorphism in the recipient and graft loss. CONCLUSIONS: Kidney allografts possessing a low-producing TGFB1 polymorphism have a higher risk of late graft loss. Our study adds to a growing body of evidence that TGF-β1 is beneficial, rather than harmful, for kidney transplant survival

    Associations of genetic risk scores based on adult adiposity pathways with childhood growth and adiposity measures

    Get PDF
    Background: Results from genome-wide association studies (GWAS) identified many loci and biological pathways that influence adult body mass index (BMI). We aimed to identify if biological pathways related to adult BMI also affect infant growth and childhood adiposity measures. Methods: We used data from a population-based prospective cohort study among 3,975 children with a mean age of 6 years. Genetic risk scores were constructed based on the 97 SNPs associated with adult BMI previously identified with GWAS and on 28 BMI related biological pathways based on subsets of these 97 SNPs. Outcomes were infant peak weight velocity, BMI at adiposity peak and age at adiposity peak, and childhood BMI, total fat mass percentage, android/gynoid fat ratio, and preperitoneal fat area. Analyses were performed using linear regression models. Results: A higher overall adult BMI risk score was associated with infant BMI at adiposity peak and childhood BMI, total fat mass, android/gynoid fat ratio, and preperitoneal fat area (all p-values < 0.05). Analyses focused on specific biological pathways showed that the membrane proteins genetic risk score was associated with infant peak weight velocity, and the genetic risk scores related to neuronal developmental processes, hypothalamic processes, cyclicAMP, WNT-signaling, membrane proteins, monogenic obesity and/or energy homeostasis, glucose homeostasis, cell cycle, and muscle biology pathways were associated with childhood adiposity measures (all p-values <0.05). None of the pathways were associated with childhood preperitoneal fat area. Conclusions: A genetic risk score based on 97 SNPs related to adult BMI was associated with peak weight velocity during infancy and general and abdominal fat measurements at the age of 6 years. Risk scores based on genetic variants linked to specific biological pathways, including central nervous system and hypothalamic processes, influence body fat development from early life onwards

    ECCO - A new initiative to support early-career researchers in the complement field

    Get PDF
    Research on the complement system, like most areas of immunology, has seen tremendous progress over the last decades. Further advances in the complement field will rely on the next generation of scientific leaders, which are today's early-career researchers (ECRs). ECRs are emerging scientists who obtained their PhD degree within the past five years. They represent a distinct population within the scientific community, and accordingly have unique needs. Unfortunately, ECRs are faced with significant challenges that require customized solutions. The current paper provides a snapshot of the major obstacles ECRs face, such as an unhealthy work-life balance, lack of mentor and peer support, and uncertain career prospects. Efforts must consequently be taken to ensure stability and success of ECRs, not only to benefit these researchers in the early stages of their career, but the entire field of complement research. The Early-Career Complementologists (ECCO) was, therefore, launched as a new Task Force to support ECRs in the complement field. This new initiative aims to support and connect ECRs in the complement field worldwide. Furthermore, ECCO is supported by both the International Complement Society (ICS) and the European Complement Network (ECN); two professional societies led by scientists investigating the complement system

    Different selectivities of oxidants during oxidation of methionine residues in the α-1-proteinase inhibitor

    Get PDF
    AbstractOxidation of the reactive site methionine (Met) in α-1-proteinase inhibitor (α-1-PI) to methionine sulfoxide (Met(O)) is known to cause depletion of its elastase inhibitory activity. To estimate the selectivity of different oxidants in converting Met to Met(O) in α-1-PI, we measured the molar ratio Met(O)/α-1-PI at total inactivation. This ratio was determined to be 1.2 for both the myeloperoxidase/H2O2/chloride system and the related compound NH2Cl. With taurine monochloramine, another myeloperoxidase-related oxidant, 1.05 mol Met(O) were generated per mol α-1-PI during inactivation. These oxidants attack preferentially one Met residue in α-1-PI, which is identical with Met 358, as concluded from the parallelism of loss of elastase inhibitory activity and oxidation of Met. A similar high specificity for Met oxidation was determined for the xanthine oxidase-derived oxidants. In contrast, the ratio found for ozone and m-chloroperoxybenzoic acid was 6.0 and 5.0, respectively, indicating oxidation of additional Met residues besides the reactive site Met in α-1-PI, i.e. unselective action of these oxidants. Further studies were performed on the efficiency of oxidants for total depletion of the elastase inhibitory capacity of α-1-PI. Ozone and m-chloroperoxybenzoic acid were 10-fold less effective and the superoxide anion/hydroxyl radicals were 30–50-fold less effective to inactivate the elastase inhibitory activity as compared to the myeloperoxidase-derived oxidants. The myeloperoxidase-related oxidants are discussed as important regulators of α-1-PI activity in vivo
    • …
    corecore