4,448 research outputs found
Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid
Hierarchical inverse dynamics based on cascades of quadratic programs have
been proposed for the control of legged robots. They have important benefits
but to the best of our knowledge have never been implemented on a torque
controlled humanoid where model inaccuracies, sensor noise and real-time
computation requirements can be problematic. Using a reformulation of existing
algorithms, we propose a simplification of the problem that allows to achieve
real-time control. Momentum-based control is integrated in the task hierarchy
and a LQR design approach is used to compute the desired associated closed-loop
behavior and improve performance. Extensive experiments on various balancing
and tracking tasks show very robust performance in the face of unknown
disturbances, even when the humanoid is standing on one foot. Our results
demonstrate that hierarchical inverse dynamics together with momentum control
can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015
Learning Models for Following Natural Language Directions in Unknown Environments
Natural language offers an intuitive and flexible means for humans to
communicate with the robots that we will increasingly work alongside in our
homes and workplaces. Recent advancements have given rise to robots that are
able to interpret natural language manipulation and navigation commands, but
these methods require a prior map of the robot's environment. In this paper, we
propose a novel learning framework that enables robots to successfully follow
natural language route directions without any previous knowledge of the
environment. The algorithm utilizes spatial and semantic information that the
human conveys through the command to learn a distribution over the metric and
semantic properties of spatially extended environments. Our method uses this
distribution in place of the latent world model and interprets the natural
language instruction as a distribution over the intended behavior. A novel
belief space planner reasons directly over the map and behavior distributions
to solve for a policy using imitation learning. We evaluate our framework on a
voice-commandable wheelchair. The results demonstrate that by learning and
performing inference over a latent environment model, the algorithm is able to
successfully follow natural language route directions within novel, extended
environments.Comment: ICRA 201
Beta-Normal Distribution: Bimodality Properties and Application
The beta-normal distribution is characterized by four parameters that jointly describe the location, the scale and the shape properties. The beta-normal distribution can be unimodal or bimodal. This paper studies the bimodality properties of the beta-normal distribution. The region of bimodality in the parameter space is obtained. The beta-normal distribution is applied to fit a numerical bimodal data set. The beta-normal fits are compared with the fits of mixture-normal distribution through simulation
Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters
Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept
Shoulder joint replacement can improve quality of life and outcome in patients with dysmelia: a case series
Background: Arthroplasty is a proven treatment option for glenohumeral osteoarthritis. Common indications include primary or posttraumatic osteoarthritis, avascular necrosis of the humeral head, rotator cuff tear arthropathy and rheumatoid osteoarthritis. Arthroplasty is rarely performed among patients with glenohumeral dysmelia. An overuse of the upper limb in patients with thalidomide-induced phocomelia and people with similar congenital deformities like dysmelia results in premature wear of the shoulder joint. This study aims to evaluate our experience with cases of glenohumeral osteoarthritis caused by dysmelia and treated with arthroplasty. To date, few reports on the outcome of shoulder arthroplasty exist on this particular patient group. Case presentation: We included four dysmelic patients (five shoulders) with substantial glenoid dysplasia in a prospective database after approval by the local ethics committee. Once conservative treatment options had been exhausted, the patients were treated with shoulder arthroplasty and assessed clinically and radiographically before and after surgery. The mean patient age at the time of surgery was 50.4 years. The minimum follow-up time was 24 months (24–91 months). All patients experienced a considerable improvement of range of motion (ROM) and a relief of pain. No intra- or postoperative complications appeared. Conclusion: Patients with dysmelia have acceptable short and mid-term results with resurfacing hemiarthroplasty. It is an effective although somewhat complicated method to relieve pain and improve movement. Long-term performance of arthroplasty in patients with dysmelia remains to be seen, particularly with regard to the remaining problem of the altered and often deficient glenoid
Field Effect Transistor Behavior in Electrospun Polyaniline/Polyethylene Oxide Nanofibers
Novel transistors and logic devices based on nanotechnology concepts are under intense development. The potential for ultra-low-power circuitry makes nanotechnology attractive for applications such as digital electronics and sensors. For NASA applications, nanotechnology offers tremendous opportunities for increased onboard data processing, and thus autonomous decision-making ability, and novel sensors that detect and respond to environmental stimuli with little oversight requirements. Polyaniline (PANi) is an intriguing material because its electrical conductivity can be changed from insulating to metallic by varying the doping levels and conformations of the polymer chain, and when combined with polyethylene oxide (PEO), can be formed into nanofibers with diameters ranging from approximately 50 to 500 nm (depending on the deposition conditions). The initial goal of this work was to demonstrate transistor behavior in these nanofibers, thus creating a foundation for future logic devices
Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed
The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays
Implementation of a Novel Low-Cost Low-Profile Ku-Band Antenna Array for Single Beam Steering from Space
Phased array antennas afford many advantages over traditional reflector antennas due to their conformality, high aperture efficiency, and unfettered beam steering capability at the price of increased cost and complexity. This paper eliminates the complex and costly array backend via the implementation of a series fed array employing a propagation constant reconfigurable transmission line connecting each element in series. Scanning can then be accomplished through one small (less than or equal to 100mil) linear motion that controls propagation constant. Specifically, each element is fed via a reconfigurable coplanar stripline transmission line with a tapered dielectric insert positioned between the transmission line traces. The dielectric insert is allowed to move up and down to control propagation constant and therefore induce scanning. We present a 20 element patch array design, scanning from -25 deg. less than or equal to theta less than or equal to 21 deg. at 13GHz. Measurements achieve only10.5 deg. less than or equal to theta less than or equal to 22 deg. scanning due to a faulty, yet correctable, manufacturing process. Beam squint is measured to be plus or minus 3 deg. for a 600MHz bandwidth. This prototype was improved to give scanning of 3.5 deg. less than or equal to theta less than or equal to 22 deg. Cross-pol patterns were shown to be -15dB below the main beam. Simulations accounting for fabrication errors match measured patterns, thus validating the designs
- …
