9 research outputs found

    Infrared Matrix-Assisted Laser Desorption/Ionization Orthogonal-Time-of-Flight Mass Spectrometry Employing a Cooling Stage and Water Ice As a Matrix

    No full text
    Although water ice has been utilized in the past as a matrix for infrared matrix-assisted laser desorption/ionization mass spectrometry (IR-MALDI-MS), it has not found a wider use due to limitations in the analytical performance and technical demands on the employment of the necessary cooling stage. Here, we developed a temperature-controlled sample stage for use with an orthogonal time-of-flight mass spectrometer (MALDI-o-TOF-MS). The stage utilizes a combination of liquid nitrogen cooling and counterheating with a Peltier element. It allows adjustment of the sample temperature between ∼−120 °C and room temperature. To identify optimal irradiation conditions for IR-MALDI with the water ice matrix, we first investigated the influence of excitation wavelength, varied between 2.7 and 3.1 μm, and laser fluence on the signal intensities of molecular substance P ions. These data suggest the involvement of transient melting of the ice during the laser pulse and primary energy deposition into liquid water. As a consequence, the best analytical performance is obtained at a wavelength corresponding to the absorption maximum of liquid water of about 2.94 μm. The current data significantly surpass the previously reported analytical features. The particular softness of the method is, for example, exemplified by the analysis of noncovalently bound holo-myoglobin and of ribonuclease B. This is also the first report demonstrating the analysis of an IgG monoclonal antibody (MW ∼ 150 kDa) from a water ice matrix. Untypical for MALDI-MS, high charge states of multiply protonated species were moreover observed for some of the investigated peptides and even for lacto-<i>N</i>-fucopentaose II oligosaccharides. Using water ice as matrix is of particular interest for MALDI MS profiling and imaging applications since matrix-free spectra are produced. The MS and tandem MS analysis of metabolites directly from frozen food samples is demonstrated with the example of a strawberry fruit

    Calculation of Membrane Lipid Ratios Using Single-Pixel Time-of-Flight Secondary Ion Mass Spectrometry Analysis

    No full text
    Much evidence suggests that membrane domains, termed lipid rafts, which are enriched in sphingomyeline and cholesterol play important roles in the regulation of physiological and pathophysiological processes. A label-free quantitative imaging method for lipids is lacking at present. We report an algorithm which enables us to identify and calculate the percentages of the ingredients of lipid mixtures from single-pixel time-of-flight secondary ion mass spectrometry (TOF-SIMS) spectra in model systems. The algorithm is based on a linear mixing model. Discriminant analysis is used to reduce the dimension of the data space. Calculations were separately performed for positive and negative ion mass spectra. Phosphatidylcholine and sphingomyeline which have identical headgroups and cannot be easily distinguished from another by positive ion mass spectra were included in the analysis. The algorithm outlined may more generally be used to calculate the percentages of ingredients of mixtures from spectra acquired by quite different methods such as X-ray photoelectron spectroscopy

    Water Ice is a Soft Matrix for the Structural Characterization of Glycosaminoglycans by Infrared Matrix-Assisted Laser Desorption/Ionization

    No full text
    Glycosaminoglycans (GAGs) are a class of heterogeneous, often highly sulfated glycans that form linear chains consisting of up to 100 monosaccharide building blocks and more. GAGs are ubiquitous constituents of connective tissue, cartilage, and the extracellular matrix, where they have key functions in many important biological processes. For their characterization by mass spectrometry (MS) and tandem MS, the high molecular weight polymers are usually enzymatically digested to oligomers with a low degree of polymerization (dp), typically disaccharides. However, owing to their lability elimination of sulfate groups upon desorption/ionization is often encountered leading to a loss of information on the analyte. Here, we demonstrate that, in particular, water ice constitutes an extremely mild matrix for the analysis of highly sulfated GAG disaccharides by infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry. Depending on the degree of sulfation, next to the singly charged ionic species doubly- and even triply charged ions are formed. An unambiguous assignment of the sulfation sites becomes possible by subjecting sodium adducts of the GAGs to low-energy collision-induced dissociation tandem MS. These ionic species exhibit a remarkable stability of the sulfate substituents, allowing the formation of fragment ions retaining their sulfation that arise from either cross-ring cleavages or rupture of the glycosidic bonds, thereby allowing an unambiguous assignment of the sulfation sites

    Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses

    No full text
    Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible

    Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses

    No full text
    Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible

    Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses

    No full text
    Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible

    Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses

    No full text
    Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity In macrophages. The cellular responses monitored are. hierarchically linked, but follow individual kinetics and are partially reversible

    Meta-Governance of Partnerships for Sustainable Development: Actorss Perspectives on How the UN Could Improve Partnershipss Governance Services in Areas of Limited Statehood

    No full text
    corecore