130 research outputs found

    Acuicultura y salud pública: La expansión de la difilobotriasis en Chile y el mundo

    Full text link

    Sleeper Cells: The Stringent Response and Persistence in the Borreliella (borrelia) Burgdorferi Enzootic Cycle

    Get PDF
    Infections with tick-transmitted Borreliella (Borrelia) burgdorferi, the cause of Lyme disease, represent an increasingly large public health problem in North America and Europe. The ability of these spirochetes to maintain themselves for extended periods of time in their tick vectors and vertebrate reservoirs is crucial for continuance of the enzootic cycle as well as for the increasing exposure of humans to them. The stringent response mediated by the alarmone (p)ppGpp has been determined to be a master regulator in B. burgdorferi. It modulates the expression of identified and unidentified open reading frames needed to deal with and overcome the many nutritional stresses and other challenges faced by the spirochete in ticks and animal reservoirs. The metabolic and morphologic changes resulting from activation of the stringent response in B. burgdorferi may also be involved in the recently described non-genetic phenotypic phenomenon of tolerance to otherwise lethal doses of antimicrobials and to other antimicrobial activities. It may thus constitute a linchpin in multiple aspects of infections with Lyme disease borrelia, providing a link between the micro-ecological challenges of its enzootic life-cycle and long-term residence in the tissues of its animal reservoirs, with the evolutionary side-effect of potential persistence in incidental human hosts. This article is protected by copyright. All rights reserved

    BmpA Is a Surface-Exposed Outer-Membrane Protein of Borrelia Burgdorferi

    Get PDF
    BmpA is an immunodominant protein of Borrelia burgdorferi as well as an arthritogenic factor. Rabbit antirecombinant BmpA (rBmpA) antibodies were raised, characterized by assaying their cross reactivity with rBmpB, rBmpC and rBmpD, and then rendered monospecific by absorption with rBmpB. This monospecific reagent reacted only with rBmpA in dot immunobinding and detected a single 39 kDa, pI 5.0, spot on two-dimensional immunoblots. It was used to assess the BmpA cellular location. BmpA was present in both detergent-soluble and -insoluble fractions of Triton X-114 phase-partitioned borrelial cells, suggesting that it was a membrane lipoprotein. Immunoblots of proteinase K-treated intact and Triton X-100 permeabilized cells showed digestion of BmpA in intact cells, consistent with surface exposure. This exposure was confirmed by dual-label immunofluorescence microscopy of intact and permeabilized borrelial cells. Conservation and surface localization of BmpA in all B. burgdorferi sensu lato genospecies could point to its playing a key role in this organism\u27s biology and pathobiology

    Patterns and regulation of ribosomal RNA transcription in Borrelia burgdorferi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Borrelia burgdorferi </it>contains one 16S and two tandem sets of 23S-5S ribosomal (r) RNA genes whose patterns of transcription and regulation are unknown but are likely to be critical for survival and persistence in its hosts.</p> <p>Results</p> <p>RT-PCR of <it>B. burgdorferi </it>N40 and B31 revealed three rRNA region transcripts: 16S rRNA-alanine transfer RNA (tRNA<sup>Ala</sup>); tRNA<sup>Ile</sup>; and both sets of 23S-5S rRNA. At 34°C, there were no differences in growth rate or in accumulation of total protein, DNA and RNA in B31 cultured in Barbour-Stoenner-Kelly (BSK)-H whether rabbit serum was present or not. At 23°C, B31 grew more slowly in serum-containing BSK-H than at 34°C. DNA per cell was higher in cells in exponential as compared to stationary phase at either temperature; protein per cell was similar at both temperatures in both phases. Similar amounts of rRNA were produced in exponential phase at both temperatures, and rRNA was down-regulated in stationary phase at either temperature. Interestingly, a <it>rel<sub>Bbu </sub></it>deletion mutant unable to generate (p)ppGpp did not down-regulate rRNA at transition to stationary phase in serum-containing BSK-H at 34°C, similar to the relaxed phenotype of <it>E. coli relA </it>mutants.</p> <p>Conclusions</p> <p>We conclude that rRNA transcription in <it>B. burgdorferi </it>is complex and regulated both by growth phase and by the stringent response but not by temperature-modulated growth rate.</p

    Functional Analysis of Borrelia Burgdorferi uvrA in DNA Damage Protection

    Get PDF
    Bacterial pathogens face constant challenges from DNA-damaging agents generated by host phagocytes. Although Borrelia burgdorferi appears to have much fewer DNA repair enzymes than pathogens with larger genomes, it does contain homologues of uvrA and uvrB (subunits A and B of excinuclease ABC). As a first step to exploring the physiologic function of uvrA(Bbu) and its possible role in survival in the host in the face of DNA-damaging agents, a partially deleted uvrA mutant was isolated by targeted inactivation. While growth of this mutant was markedly inhibited by UV irradiation, mitomycin C (MMC) and hydrogen peroxide at doses that lacked effect on wild-type B. burgdorferi, its response to pH 6.0-6.8 and reactive nitrogen intermediates was similar to that of the wild-type parental strain. The sensitivity of the inactivation mutant to UV irradiation, MMC and peroxide was complemented by an extrachromosomal copy of uvrA(Bbu). We conclude that uvrA(Bbu) is functional in B. burgdorferi

    Borrelia Chilensis, a New Member of the Borrelia Burgdorferi Sensu Lato Complex That Extends the Range of This Genospecies in the Southern Hemisphere

    Get PDF
    Borrelia burgdorferi sensu lato (s.l.), transmitted by Ixodes spp. ticks, is the causative agent of Lyme disease. Although Ixodes spp. ticks are distributed in both Northern and Southern Hemispheres, evidence for the presence of B. burgdorferi s.l. in South America apart from Uruguay is lacking. We now report the presence of culturable spirochetes with flat-wave morphology and borrelial DNA in endemic Ixodes stilesi ticks collected in Chile from environmental vegetation and long-tailed rice rats (Oligoryzomys longicaudatus). Cultured spirochetes and borrelial DNA in ticks were characterized by multilocus sequence typing and by sequencing five other loci (16S and 23S ribosomal genes, 5S-23S intergenic spacer, flaB, ospC). Phylogenetic analysis placed this spirochete as a new genospecies within the Lyme borreliosis group. Its plasmid profile determined by polymerase chain reaction and pulsed-field gel electrophoresis differed from that of B. burgdorferi B31A3. We propose naming this new South American member of the Lyme borreliosis group B. chilensis VA1 in honor of its country of origin
    corecore