1,553 research outputs found

    Stability window and mass-radius relation for magnetized strange quark stars

    Full text link
    The stability of magnetized strange quark matter (MSQM) is investigated within the phenomenological MIT bag model, taking into account the variation of the relevant input parameters, namely, the strange quark mass, baryon density, magnetic field and bag parameter. We obtain that the energy per baryon decreases as the magnetic field increases, and its minimum value at vanishing pressure is lower than the value found for SQM. This implies that MSQM is more stable than non-magnetized SQM. Furthermore, the stability window of MSQM is found to be wider than the corresponding one of SQM. The mass-radius relation for magnetized strange quark stars is also derived in this framework.Comment: 12 pages, 6 figures, 3 table

    Effects of Low-Energy Laser Irradiation on Sperm Cells Dynamics of Rabbit (Oryctolagus Cuniculus)

    Get PDF
    Infertility is a world disease in which a couple is unable to achieve pregnancy. There are numerous parameters to determinate fertility; nevertheless, sperm motility is by consensus one of the most important attributes to evaluate male fertility. Contributions to a better understanding of this crucial parameter are imperative; hence, the aim of this investigation was to assess the effect of low-energy laser irradiation on sperm cell dynamics in thawed samples that were cryopreserved. We used a 405 nm blue laser beam to irradiate spermatic cells from rabbit inside a temperature-controlled dispersion chamber at 37 °C; then, we applied an image recognizing system to calculate individual sperm trajectories and velocities. We found that sperms raise its motility after irradiation suggesting that λ=405 nm is an optimal wavelength for spermatic photo-stimulation

    A new spin-anisotropic harmonic honeycomb iridate

    Full text link
    The physics of Mott insulators underlies diverse phenomena ranging from high temperature superconductivity to exotic magnetism. Although both the electron spin and the structure of the local orbitals play a key role in this physics, in most systems these are connected only indirectly --- via the Pauli exclusion principle and the Coulomb interaction. Iridium-based oxides (iridates) open a further dimension to this problem by introducing strong spin-orbit interactions, such that the Mott physics has a strong orbital character. In the layered honeycomb iridates this is thought to generate highly spin-anisotropic interactions, coupling the spin orientation to a given spatial direction of exchange and leading to strongly frustrated magnetism. The potential for new physics emerging from such interactions has driven much scientific excitement, most recently in the search for a new quantum spin liquid, first discussed by Kitaev \cite{kitaev_anyons_2006}. Here we report a new iridate structure that has the same local connectivity as the layered honeycomb, but in a three-dimensional framework. The temperature dependence of the magnetic susceptibility exhibits a striking reordering of the magnetic anisotropy, giving evidence for highly spin-anisotropic exchange interactions. Furthermore, the basic structural units of this material suggest the possibility of a new family of structures, the `harmonic honeycomb' iridates. This compound thus provides a unique and exciting glimpse into the physics of a new class of strongly spin-orbit coupled Mott insulators.Comment: 12 pages including bibliography, 5 figure

    Flavour Issues in Leptogenesis

    Full text link
    We study the impact of flavour in thermal leptogenesis, including the quantum oscillations of the asymmetries in lepton flavour space. In the Boltzmann equations we find different numerical factors and additional terms which can affect the results significantly. The upper bound on the CP asymmetry in a specific flavour is weaker than the bound on the sum. This suggests that -- when flavour dynamics is included -- there is no model-independent limit on the light neutrino mass scale,and that the lower bound on the reheat temperature is relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation

    Induced Parity Breaking Term in Arbitrary Odd Dimensions at Finite Temperature

    Get PDF
    We calculate the exact parity odd part of the effective action (Γodd2d+1\Gamma_{odd}^{2d+1}) for massive Dirac fermions in 2d+1 dimensions at finite temperature, for a certain class of gauge field configurations. We consider first Abelian external gauge fields, and then we deal with the case of a non-Abelian gauge group containing an Abelian U(1) subgroup. For both cases, it is possible to show that the result depends on topological invariants of the gauge field configurations, and that the gauge transformation properties of Γodd2d+1\Gamma_{odd}^{2d+1} depend only on those invariants and on the winding number of the gauge transformation.Comment: 10 pages, revtex, no figure

    PadrÔes de controle de crises em pacientes com epilepsia de lobo temporal com ou sem esclerose hipocampal

    Get PDF
    Objective Patients with mesial temporal lobe epilepsy (MTLE) may present unstable pattern of seizures. We aimed to evaluate the occurrence of relapse-remitting seizures in MTLE with (MTLE-HS) and without (MTLE-NL) hippocampal sclerosis. Method We evaluated 172 patients with MTLE-HS (122) or MTLE-NL (50). Relapse-remitting pattern was defined as periods longer than two years of seizure-freedom intercalated with seizure recurrence. Infrequent seizures was considered as up to three seizures per year and frequent seizures as any period of seizures higher than that. Results Thirty-seven (30%) MTLE-HS and 18 (36%) MTLE-NL patients had relapse-remitting pattern (X2, p = 0.470). This was more common in those with infrequent seizures (X2, p < 0.001). Twelve MTLE-HS and one MTLE-NL patients had prolonged seizure remission between the first and second decade of life (X2, p = 0.06). Conclusion Similar proportion of MTLE-HS or MTLE-NL patients present relapse-remitting seizures and this occurs more often in those with infrequent seizures.Patients with mesial temporal lobe epilepsy (MTLE) may present unstable pattern of seizures. We aimed to evaluate the occurrence of relapse-remitting seizures in MTLE with (MTLE-HS) and without (MTLE-NL) hippocampal sclerosis. Method: We evaluated 172 pat7327982FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2005/56578-4; 2009/54552-9SEM INFORMAÇÃOPacientes com epilepsia do lobo temporal mesial (ELTM) podem apresentar padrĂŁo instĂĄvel de crises epilĂ©pticas. Nosso objetivo foi avaliar ocorrĂȘncia de crises remitente-recorrentes em ELTM com (ELTM-EH) e sem (ELTM-NL) esclerose hipocampal. MĂ©todo: Ava

    Statistics of Q-Oscillators, Quons and Relation to Fractional Satistics

    Get PDF
    The statistics of qq-oscillators, quons and to some extent, of anyons are studied and the basic differences among these objects are pointed out. In particular, the statistical distributions for different bosonic and fermionic qq-oscillators are found for their corresponding Fock space representations in the case when the hamiltonian is identified with the number operator. In this case and for nonrelativistic particles, the single-particle temperature Green function is defined with qq-deformed periodicity conditions. The equations of state for nonrelativistic and ultrarelativistic bosonic qq-gases in an arbitrary space dimension are found near Bose statistics, as well as the one for an anyonic gas near Bose and Fermi statistics. The first corrections to the second virial coefficients are also evaluated. The phenomenon of Bose-Einstein condensation in the qq-deformed gases is also discussed.Comment: 21 pages, Latex, HU-TFT-93-2

    Non-static Dimensional Reduction of QED_3 at Finite Temperature

    Get PDF
    We study an extreme non-static limit of 2+1-dimensional QED obtained by making a dimensional reduction so that all fields are spatially uniform but time dependent. This dimensional reduction leads to a 0+1-dimensional field theory that inherits many of the features of the 2+1-dimensional model, such as Chern-Simons terms, time-reversal violation, an analogue of parity violation, and global U(2) flavor symmetry. At one-loop level, interactions induce a Chern-Simons term at finite T with coefficient tanh(beta m_F/2), where m_F is the fermion mass. The finite temperature two loop self-energies are also computed, and are non-zero for all temperatures.Comment: 28 pp, 11 figures, uses axodraw.st
    • 

    corecore