2,165 research outputs found

    Vector meson ω\omega-ϕ\phi mixing and their form factors in light-cone quark model

    Full text link
    The vector meson ω\omega-ϕ\phi mixing is studied in two alternative scenarios with different numbers of mixing angles, i.e., the one-mixing-angle scenario and the two-mixing-angle scenario, in both the octect-singlet mixing scheme and the quark flavor mixing scheme. Concerning the reproduction of experimental data and the Q2Q^2 behavior of transition form factors, one-mixing-angle scenario in the quark flavor scheme performs better than that in the octet-singlet scheme, while the two-mixing-angle scenario works well for both mixing schemes. The difference between the two mixing angles in the octet-singlet scheme is bigger than that in the quark flavor scheme.Comment: 16 pages, 7 figures, final version to appear in PR

    {FlowDNS}: {C}orrelating netflow and {DNS} streams at scale

    Get PDF

    Phonon Bloch oscillations in acoustic-cavity structures

    Full text link
    We describe a semiconductor multilayer structure based in acoustic phonon cavities and achievable with MBE technology, designed to display acoustic phonon Bloch oscillations. We show that forward and backscattering Raman spectra give a direct measure of the created phononic Wannier-Stark ladder. We also discuss the use of femtosecond laser impulsions for the generation and direct probe of the induced phonon Bloch oscillations. We propose a gedanken experiment based in an integrated phonon source-structure-detector device, and we present calculations of pump and probe time dependent optical reflectivity that evidence temporal beatings in agreement with the Wannier-Stark ladder energy splitting.Comment: PDF file including 4 figure

    Renormalization group analysis of the 2D Hubbard model

    Full text link
    Salmhofer [Commun. Math. Phys. 194, 249 (1998)] has recently developed a new renormalization group method for interacting Fermi systems, where the complete flow from the bare action of a microscopic model to the effective low-energy action, as a function of a continuously decreasing infrared cutoff, is given by a differential flow equation which is local in the flow parameter. We apply this approach to the repulsive two-dimensional Hubbard model with nearest and next-nearest neighbor hopping amplitudes. The flow equation for the effective interaction is evaluated numerically on 1-loop level. The effective interactions diverge at a finite energy scale which is exponentially small for small bare interactions. To analyze the nature of the instabilities signalled by the diverging interactions we extend Salmhofers renormalization group for the calculation of susceptibilities. We compute the singlet superconducting susceptibilities for various pairing symmetries and also charge and spin density susceptibilities. Depending on the choice of the model parameters (hopping amplitudes, interaction strength and band-filling) we find commensurate and incommensurate antiferromagnetic instabilities or d-wave superconductivity as leading instability. We present the resulting phase diagram in the vicinity of half-filling and also results for the density dependence of the critical energy scale.Comment: 16 pages, RevTeX, 16 eps figure

    Content-aware Traffic Engineering

    Get PDF
    Also appears as TU-Berlin technical report 2012-3, ISSN: 1436-9915Also appears as TU-Berlin technical report 2012-3, ISSN: 1436-9915Today, a large fraction of Internet traffic is originated by Content Providers (CPs) such as content distribution networks and hyper-giants. To cope with the increasing demand for content, CPs deploy massively distributed infrastructures. This poses new challenges for CPs as they have to dynamically map end-users to appropriate servers, without being fully aware of network conditions within an ISP as well as the end-users network locations. Furthermore, ISPs struggle to cope with rapid traffic shifts caused by the dynamic server selection process of CPs. In this paper, we argue that the challenges that CPs and ISPs face separately today can be turned into an opportunity. We show how they can jointly take advantage of the deployed distributed infrastructures to improve their operation and end-user performance. We propose Content-aware Traffic Engineering (CaTE), which dynamically adapts the traffic demand for content hosted on CPs by utilizing ISP network information and end-user location during the server selection process. As a result, CPs enhance their end-user to server mapping and improve end-user experience, thanks to the ability of network-informed server selection to circumvent network bottlenecks. In addition, ISPs gain the ability to partially influence the traffic demands in their networks. Our results with operational data show improvements in path length and delay between end-user and the assigned CP server, network wide traffic reduction of up to 15%, and a decrease in ISP link utilization of up to 40% when applying CaTE to traffic delivered by a small number of major CPs

    Determination of the η\eta and η′\eta' Mixing Angle from the Pseudoscalar Transition Form Factors

    Full text link
    The possible range of η−η′\eta-\eta' mixing angle is determined from the transition form factors Fηγ(Q2)F_{\eta \gamma}(Q^2) and Fη′γ(Q2)F_{\eta' \gamma}(Q^2) with the help of the present experimental data. For such purpose, the quark-flavor mixing scheme is adopted and the pseudoscalar transition form factors are calculated under the light-cone pQCD framework, where the transverse momentum corrections and the contributions beyond the leading Fock state have been carefully taken into consideration. We construct a phenomenological expression to estimate the contributions to the form factors beyond the leading Fock state based on their asymptotic behavior at Q2→0Q^2\to 0 and Q2→∞Q^2\to\infty. By taking the quark-flavor mixing scheme, our results lead to ϕ=38.0∘±1.0∘±2.0∘\phi= 38.0^{\circ}\pm 1.0^{\circ}\pm 2.0^{\circ}, where the first error coming from experimental uncertainty and the second error coming from the uncertainties of the wavefunction parameters. The possible intrinsic charm component in η\eta and η′\eta' is discussed and our present analysis also disfavors a large portion of intrinsic charm component in η\eta and η′\eta', e.g. ∣fη′c∣≤50MeV|f^c_{\eta'}|\le 50 {\rm MeV}.Comment: 18 Pages, 3 figures. Several references added. To be published in EPJ

    A cytomegalovirus-based vaccine provides long-lasting protection against lethal Ebola virus challenge after a single dose

    Get PDF
    This is the author accepted manuscript. The final version is available fromElsevier via the DOI in this record.Ebola virus (Zaire ebolavirus; EBOV) is a highly lethal hemorrhagic disease virus that most recently was responsible for two independent 2014 outbreaks in multiple countries in Western Africa, and the Democratic Republic of the Congo, respectively. Herein, we show that a cytomegalovirus (CMV)-based vaccine provides durable protective immunity from Ebola virus following a single vaccine dose. This study has implications for human vaccination against ebolaviruses, as well as for development of a 'disseminating' vaccine to target these viruses in wild African great apes.We thank Dr U. Koszinowski (Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Germany) for providing the pSMfr3 MCMV BAC, and Dr D. Court (NCI-Frederick, MD) for providing the lambda-based recombination system used to construct the original MCMV/ZEBOV-NPCTL construct. We appreciate K. Marshall (VGTI, OR) and J. Bailey (NIAID, MT) for their organization and coordination of animals used in the study. We also thank the members of Rocky Mountain Veterinary Branch (DIR, NIAID, NIH) for assistance with animal care. Finally, we thank Drs H. Ebihara (DIR, NIAID, NIH), A. Marzi (DIR, NIAID, NIH), P. Barry (University of California at Davis, CA), M. Cranfield (Mountain Gorilla Veterinary Project, Baltimore, MD) for insightful discussions. This study was supported by R21 (AI088442) and the Intramural Research Program of the NIAID, NIH; and University of Plymouth, School of Biomedical and Healthcare Sciences internal funding

    Non-leptonic two-body decays of the Bc meson in light-front quark model and QCD factorization approach

    Full text link
    We study exclusive non-leptonic two-body Bc→(D(s),ηc,B(s))+FB_c\to(D_{(s)},\eta_c,B_{(s)})+F decays with FF(pseudoscalar or vector meson) being factored out in QCD factorization approach. The non-leptonic decay amplitudes are related to the product of meson decay constants and the form factors for semileptonic BcB_c decays. As inputs in obtaining the branching ratios for a large set of non-leptonic BcB_c decays, we use the weak form factors for the semileptonic Bc→(D(s),ηc,B(s))B_c\to(D_{(s)},\eta_c,B_{(s)}) decays in the whole kinematical region and the unmeasured meson decay constants obtained from our previous light-front quark model. We compare our results of the branching ratios with those of other theoretical studies.Comment: 11 pages, 3 figures, minor corrections, version to appear in PR

    Quark structure of pseudoscalar mesons

    Full text link
    I review to which extent the properties of pseudoscalar mesons can be understood in terms of the underlying quark (and eventually gluon) structure. Special emphasis is put on the progress in our understanding of eta-eta' mixing. Process-independent mixing parameters are defined, and relations between different bases and conventions are studied. Both, the low-energy description in the framework of Chiral Perturbation Theory and the high-energy application in terms of light-cone wave functions for partonic Fock states, are considered. A thorough discussion of theoretical and phenomenological consequences of the mixing approach will be given. Finally, I will discuss mixing with other states pi^0, eta(c), ...).Comment: 48 pages, 7 figures, using epsfig.st

    Minimal Flavour Violation and Beyond

    Full text link
    Starting from the effective-theory framework for Minimal Flavour Violation, we give a systematic definition of next-to-minimal (quark) flavour violation in terms of a set of spurion fields exhibiting a particular hierarchy with respect to a small (Wolfenstein-like) parameter. A few illustrative examples and their consequences for charged and neutral decays with different quark chiralities are worked out in some detail. Our framework can be used as a model-independent classification scheme for the parameterization of flavour structure from physics beyond the Standard Model.Comment: 17 pages, no figures, phenomenological discussion extended, references adde
    • …
    corecore