4,589 research outputs found

    The Hubble Sequence in Groups: The Birth of the Early-Type Galaxies

    Full text link
    The physical mechanisms and timescales that determine the morphological signatures and the quenching of star formation of typical (~L*) elliptical galaxies are not well understood. To address this issue, we have simulated the formation of a group of galaxies with sufficient resolution to track the evolution of gas and stars inside about a dozen galaxy group members over cosmic history. Galaxy groups, which harbor many elliptical galaxies in the universe, are a particularly promising environment to investigate morphological transformation and star formation quenching, due to their high galaxy density, their relatively low velocity dispersion, and the presence of a hot intragroup medium. Our simulation reproduces galaxies with different Hubble morphologies and, consequently, enables us to study when and where the morphological transformation of galaxies takes place. The simulation does not include feedback from active galactic nuclei showing that it is not an essential ingredient for producing quiescent, red elliptical galaxies in galaxy groups. Ellipticals form, as suspected, through galaxy mergers. In contrast with what has often been speculated, however, these mergers occur at z>1, before the merging progenitors enter the virial radius of the group and before the group is fully assembled. The simulation also shows that quenching of star formation in the still star-forming elliptical galaxies lags behind their morphological transformation, but, once started, is taking less than a billion years to complete. As long envisaged the star formation quenching happens as the galaxies approach and enter the finally assembled group, due to quenching of gas accretion and (to a lesser degree) stripping. A similar sort is followed by unmerged, disk galaxies, which, as they join the group, are turned into the red-and-dead disks that abound in these environments.Comment: 12 pages, 12 Figures, 1 Table, accepted for publication in AP

    Suppression of vortex channeling in meandered YBa2Cu3O7-d grain boundaries

    Full text link
    We report on the in-plane magnetic field (H) dependence of the critical current density (Jc) in meandered and planar single grain boundaries (GBs) isolated in YBa2Cu3O7-d (YBCO) coated conductors. The Jc(H)properties of the planar GB are consistent with those previously seen in single GBs of YBCO films grown on SrTiO3 bi-crystals. In the straight boundary a characteristic flux channeling regime when H is oriented near the GB plane, associated with a reduced Jc, is seen. The meandered GB does not show vortex channeling since it is not possible for a sufficient length of vortex line to lie within it.Comment: Submitted to AP

    Role of "Intrinsic Charm" in Semi-Leptonic B-Meson Decays

    Get PDF
    We discuss the role of so-called "intrinsic-charm" operators in semi-leptonic B-meson decays, which appear first at order 1/m_b^3 in the heavy quark expansion. We show by explicit calculation that -- at scales mu <= m_c -- the contributions from "intrinsic-charm" effects can be absorbed into short-distance coefficient functions multiplying, for instance, the Darwin term. Then, the only remnant of "intrinsic charm" are logarithms of the form ln(m_c^2/m_b^2), which can be resummed by using renormalization-group techniques. As long as the dynamics at the charm-quark scale is perturbative, alpha_s(m_c) << 1, this implies that no additional non-perturbative matrix elements aside from the Darwin and the spin-orbit term have to be introduced at order 1/m_b^3. Hence, no sources for additional hadronic uncertainties have to be taken into account. Similar arguments may be made for higher orders in the 1/m_b expansion.Comment: 14 pages, 1 figure, uses slashed.sty, slight modifications to match published versio

    Hyperatlas: A New Framework for Image Federation

    Get PDF
    Hyperatlas is an open standard intended to facilitate the large-scale federation of image-based data. The subject of hyperatlas is the space of sphere-to-plane projection mappings (the FITS-WCS information), and the standard consists of coherent collections of these on which data can be resampled and thereby federated with other image data. We hope for a distributed effort that will produce a multi-faceted image atlas of the sky, made by federating many different surveys at different wavelengths and different times. We expect that hyperatlas-compliant imagery will be published and discovered through an International Virtual Observatory Alliance (IVOA) registry, and that grid-based services will emerge for the required resampling and mosaicking.Comment: Published in ADASS XIII proceeding

    Atlasmaker: A Grid-based Implementation of the Hyperatlas

    Get PDF
    The Atlasmaker project is using Grid technology, in combination with NVO interoperability, to create new knowledge resources in astronomy. The product is a multi-faceted, multi-dimensional, scientifically trusted image atlas of the sky, made by federating many different surveys at different wavelengths, times, resolutions, polarizations, etc. The Atlasmaker software does resampling and mosaicking of image collections, and is well-suited to operate with the Hyperatlas standard. Requests can be satisfied via on-demand computations or by accessing a data cache. Computed data is stored in a distributed virtual file system, such as the Storage Resource Broker (SRB). We expect these atlases to be a new and powerful paradigm for knowledge extraction in astronomy, as well as a magnificent way to build educational resources. The system is being incorporated into the data analysis pipeline of the Palomar-Quest synoptic survey, and is being used to generate all-sky atlases from the 2MASS, SDSS, and DPOSS surveys for joint object detection.Comment: Published in the Proceedings of ADASS XI

    Decays of J/ψJ/\psi and ψ\psi^\prime into vector and pseudoscalar meson and the pseudoscalar glueball-qqˉq\bar{q} mixing

    Get PDF
    We introduce a parametrization scheme for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP where the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation (DOZI) can be parametrized by certain parameters with explicit physical interpretations. This scheme can be used to clarify the glueball-qqˉq\bar{q} mixing within the pseudoscalar mesons. We also include the contributions from the electromagnetic (EM) decays of J/ψJ/\psi and ψ\psi^\prime via J/ψ(ψ)γVPJ/\psi(\psi^\prime)\to \gamma^*\to VP. Via study of the isospin violated channels, such as J/ψ(ψ)ρηJ/\psi(\psi^\prime)\to \rho\eta, ρη\rho\eta^\prime, ωπ0\omega\pi^0 and ϕπ0\phi\pi^0, reasonable constraints on the EM decay contributions are obtained. With the up-to-date experimental data for J/ψ(ψ)VPJ/\psi(\psi^\prime)\to VP, J/ψ(ψ)γPJ/\psi(\psi^\prime)\to \gamma P and PγγP\to \gamma\gamma, etc, we arrive at a consistent description of the mentioned processes with a minimal set of parameters. As a consequence, we find that there exists an overall suppression of the ψ3g\psi^\prime\to 3g form factors, which sheds some light on the long-standing "ρπ\rho\pi puzzle". By determining the glueball components inside the pseudoscalar η\eta and η\eta^\prime in three different glueball-qqˉq\bar{q} mixing schemes, we deduce that the lowest pseudoscalar glueball, if exists, has rather small qqˉq\bar{q} component, and it makes the η(1405)\eta(1405) a preferable candidate for 0+0^{-+} glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was corrected. There's slight change to the numerical results, while the conclusion is intac

    β-SnWO₄ with Morphology-Controlled Synthesis and Facet-Depending Photocatalysis

    Get PDF

    Insights into the naphthalenide-driven synthesis and reactivity of zerovalent iron nanoparticles

    Get PDF
    The chemical and thermal stability of alkali metal naphthalenides as powerful reducing agents are examined, including the type of alkali metal ([LiNaph] and [NaNaph]), the type of solvent (THF, DME), the temperature (−30 to +50 °C), and the time of storage (0 to 12 hours). The stability and concentration of [LiNaph]/[NaNaph] are quantified via UV-Vis spectroscopy and the Lambert–Beer law. As a result, the solutions of [LiNaph] in THF at low temperature turn out to be most stable. The decomposition can be related to a reductive polymerization of the solvent. The most stable [LiNaph] solutions in THF are exemplarily used to prepare reactive zerovalent iron nanoparticles, 2.3 ± 0.3 nm in size, by reduction of FeCl3_{3} in THF. Finally, the influence of [LiNaph] and/or remains of the starting materials and solvents upon controlled oxidation of the as-prepared Fe(0) nanoparticles with iodine in the presence of selected ligands is evaluated and results in four novel, single-crystalline iron compounds ([FeI2_{2}(MeOH)2_{2}], ([MePPh3_{3}][FeI3_{3}(Ph3_{3}P)])4_{4}·PPh3_{3}·6C7_{7}H8_{8}, [FeI2_{2}(PPh3_{3})2_{2}], and [FeI2_{2}(18-crown-6)]). Accordingly, reactive Fe(0) nanoparticles can be obtained in the liquid phase via [LiNaph]-driven reduction and instantaneously reacted to give new compounds without remains of the initial reduction (e.g. LiCl, naphthalene, and THF)

    The eta-photon transition form factor

    Get PDF
    The eta-photon transition form factor is evaluated in a formalism based on a phenomenological description at low values of the photon virtuality, and a QCD-based description at high photon virtualities, matching at a scale Q02Q_{0}^{2}. The high photon virtuality description makes use of a Distribution Amplitude calculated in the Nambu-Jona-Lasinio model with Pauli-Villars regularization at the matching scale Q02Q_{0}^{2}, and QCD evolution from Q02Q_{0}^{2} to higher values of Q2Q^{2}. A good description of the available data is obtained. The analysis indicates that the recent data from the BaBar collaboration on pion and eta transition form factor can be well reproduced, if a small contribution of twist three at the matching scale Q02Q_{0}^{2} is included.Comment: 14 pages, 3 figures, revised version, minor corrections, references added, conclusions unchanged. Accepted for publication in Phys. Rev.
    corecore