11,351 research outputs found

    Quantifying the Bull's Eye Effect

    Full text link
    We have used N-body simulations to develop two independent methods to quantify redshift distortions known as the Bull's Eye effect (large scale infall plus small scale virial motion). This effect depends upon the mass density, Ω0\Omega_0, so measuring it can in principle give an estimate of this important cosmological parameter. We are able to measure the effect and distinguish between its strength for high and low values of Ω0\Omega_0. Unlike other techniques which utilize redshift distortions, one of our methods is relatively insensitive to bias. In one approach, we use path lengths between contour crossings of the density field. The other is based upon percolation. We have found both methods to be successful in quantifying the effect and distinguishing between values of Ω0\Omega_0. However, only the path lengths method exhibits low sensitivity to bias.Comment: 21 pages, 5 figures, 3 tables; Replaced version - minor corrections, replaced figure 2; To appear in ApJ, Jan. 20, 200

    Screening for female-sterile mutants

    Get PDF
    Screening for female-sterile mutant

    Preliminary investigation of the circadian rhythms of wild-collected Neurospora strains.

    Get PDF
    A medium that allows for measurement of circadian rhythms in wild-collected strains of Neurospora is reported. Preliminary results with N. intermedia strains from four different latitudes suggest natural variation in clock-affecting loci

    Vortex Plasma in a Superconducting Film with Magnetic Dots

    Get PDF
    We consider a superconducting film, placed upon a magnetic dot array. Magnetic moments of the dots are normal to the film and randomly oriented. We determine how the concentration of the vortices in the film depends on the magnetic moment of a dot at low temperatures. The concentration of the vortices, bound to the dots, is proportional to the density of the dots and depends on the magnetization of a dot in a step-like way. The concentration of the unbound vortices oscillates about a value, proportional to the magnetic moment of the dots. The period of the oscillations is equal to the width of a step in the concentration of the bound vortices.Comment: RevTeX, 4 page

    Sources of magnetic fields in recurrent interplanetary streams

    Get PDF
    The sources of magnetic fields in recurrent streams were examined. Most fields and plasmas at 1 AU were related to coronal holes, and the magnetic field lines were open in those holes. Some of the magnetic fields and plasmas were related to open field line regions on the sun which were not associated with known coronal holes, indicating that open field lines are more basic than coronal holes as sources of the solar wind. Magnetic field intensities in five equatorial coronal holes ranged from 2G to 18G. Average measured photospheric magnetic fields along the footprints of the corresponding unipolar fields on circular equatorial arcs at 2.5 solar radii had a similar range and average, but in two cases the intensities were approximately three times higher than the projected intensities. The coronal footprints of the sector boundaries on the source surface at 2.5 solar radii, meandered between -45 deg and +45 deg latitude, and their inclination ranged from near zero to near ninety degrees

    Fully Dynamic Matching in Bipartite Graphs

    Full text link
    Maximum cardinality matching in bipartite graphs is an important and well-studied problem. The fully dynamic version, in which edges are inserted and deleted over time has also been the subject of much attention. Existing algorithms for dynamic matching (in general graphs) seem to fall into two groups: there are fast (mostly randomized) algorithms that do not achieve a better than 2-approximation, and there slow algorithms with \O(\sqrt{m}) update time that achieve a better-than-2 approximation. Thus the obvious question is whether we can design an algorithm -- deterministic or randomized -- that achieves a tradeoff between these two: a o(m)o(\sqrt{m}) approximation and a better-than-2 approximation simultaneously. We answer this question in the affirmative for bipartite graphs. Our main result is a fully dynamic algorithm that maintains a 3/2 + \eps approximation in worst-case update time O(m^{1/4}\eps^{/2.5}). We also give stronger results for graphs whose arboricity is at most \al, achieving a (1+ \eps) approximation in worst-case time O(\al (\al + \log n)) for constant \eps. When the arboricity is constant, this bound is O(logn)O(\log n) and when the arboricity is polylogarithmic the update time is also polylogarithmic. The most important technical developement is the use of an intermediate graph we call an edge degree constrained subgraph (EDCS). This graph places constraints on the sum of the degrees of the endpoints of each edge: upper bounds for matched edges and lower bounds for unmatched edges. The main technical content of our paper involves showing both how to maintain an EDCS dynamically and that and EDCS always contains a sufficiently large matching. We also make use of graph orientations to help bound the amount of work done during each update.Comment: Longer version of paper that appears in ICALP 201

    Monitoring neurotoxins in industry: development of a neurobehavioral test battery

    Full text link
    Huguet Françoise. 104 - Elémens (Les) ou premières instructions de la jeunesse. In: , . Les Livres pour l'Enfance et la Jeunesse de Gutenberg à Guizot. Les collections de la Bibliothèque de l'Institut National de Recherche Pédagogique. Paris : Institut national de recherche pédagogique, 1997. p. 57. (Bibliothèque de l'Histoire de l'Education, 16
    corecore