4,469 research outputs found
Waveguide-based single-pixel up-conversion infrared spectrometer
A periodically poled lithium niobate (PPLN) waveguide-based single-pixel
up-conversion infrared spectrometer was demonstrated. Sum-frequency generation
between a 1.5 micrometer band scanning pump laser and a 1.3 micrometer band
signal generated visible radiation which was detected by a silicon
single-photon detector. The noise equivalent power of the upconversion
spectrometer was two-orders-of-magnitude lower than that of a commercial
optical spectrum analyzer.Comment: 5 pages, 3 figure
Comparison of rocket-borne probes for electron density measurements Quarterly status report no. 5, Aug. 1 - Oct. 31, 1965
Impedance, resonance, capacitance, electrostatic, and Langmuir probe performance for ionospheric electron density profil
Design principles for Bernal spirals and helices with tunable pitch
Using the framework of potential energy landscape theory, we describe two in
silico designs for self-assembling helical colloidal superstructures based upon
dipolar dumbbells and Janus-type building blocks, respectively. Helical
superstructures with controllable pitch length are obtained using external
magnetic field driven assembly of asymmetric dumbbells involving screened
electrostatic as well as magnetic dipolar interactions. The pitch of the helix
is tuned by modulating the Debye screening length over an experimentally
accessible range. The second design is based on building blocks composed of
rigidly linked spheres with short-range anisotropic interactions, which are
predicted to self-assemble into Bernal spirals. These spirals are quite
flexible, and longer helices undergo rearrangements via cooperative, hinge-like
moves, in agreement with experiment
Measurement of Birefringence of Low-Loss, High-Reflectance Coating of M-Axis Sapphire
The birefringence of a low-loss, high-reflectance coating applied to an 8-cm-diameter sapphire crystal grown in the m-axis direction has been mapped. By monitoring the transmission of a high-finesse Fabry-Perot cavity as a function of the polarization of the input light, we find an upper limit for the magnitude of the birefringence of 2.5 x 10^-4 rad and an upper limit in the variation in direction of the birefringence of 10 deg. These values are sufficiently small to allow consideration of m-axis sapphire as a substrate material for the optics of the advanced detector at the Laser Interferometer Gravitational Wave Observatory
Modified Sagnac interferometer for high-sensitivity magneto-optic measurements atcryogenic temperatures
We describe a geometry for a Sagnac interferometer with a zero-area Sagnac
loop for measuring magneto-optic Kerr effect (MOKE) at cryogenic temperatures.
The apparatus is capable of measuring absolute polar Kerr rotation at 1550 nm
wavelength without any modulation of the magnetic state of the sample, and is
intrinsically immune to reciprocal effects such as linear birefringence and
thermal fluctuation. A single strand of polarization-maintaining (PM) fiber is
fed into a liquid helium probe, eliminating the need for optical viewports.
This configuration makes it possible to conduct MOKE measurements at much lower
temperatures than before. With an optical power of only 10 W, we
demonstrate static Kerr measurements with a shot-noise limited sensitivity of
rad/ from room temperature down to 2K. Typical
bias drift was measured to be rad/hour.Comment: 3 pages, 3 figure
The test-retest reliability of centre of pressure measures in bipedal static task conditions - A systematic review of the literature
Summary of background data: The analysis of centre of pressure (COP) excursions is used as an index of postural stability in standing. Conflicting data have been reported over the past 20 years regarding the reliability of COP measures and no standard procedure for COP measure use in study design has been established. Search methods: Six online databases (January 1980 to February 2009) were systematically searched followed by a manual search of retrieved papers. Results: Thirty-two papers met the inclusion criteria. The majority of the papers (26/32, 81.3%) demonstrated acceptable reliability. While COP mean velocity (mVel) demonstrated variable but generally good reliability throughout the different studies (r= 0.32-0.94), no single measurement of COP appeared significantly more reliable than the others. Regarding data acquisition duration, a minimum of 90 s is required to reach acceptable reliability for most COP parameters. This review further suggests that while eyes closed readings may show slightly higher reliability coefficients, both eyes open and closed setups allow acceptable readings under the described conditions (r≥0.75). Also averaging the results of three to five repetitions on firm surface is necessary to obtain acceptable reliability. A sampling frequency of 100. Hz with a cut-off frequency of 10. Hz is also recommended. No final conclusion regarding the feet position could be reached. Conclusions: The studies reviewed show that bipedal static COP measures may be used as a reliable tool for investigating general postural stability and balance performance under specific conditions. Recommendations for maximizing the reliability of COP data are provided
Excitation of plasma resonances by a small pulsed dipole
Resonant oscillation decay excited by pulsed dipole in collisionless plasm
Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock
We report 10-ps correlated photon pair generation in periodically-poled
reverse-proton-exchange lithium niobate waveguides with integrated mode
demultiplexer at a wavelength of 1.5-um and a clock of 10 GHz. Using
superconducting single photon detectors, we observed a coincidence to
accidental count ratio (CAR) as high as 4000. The developed photon-pair source
may find broad application in quantum information systems as well as quantum
entanglement experiments.Comment: 6 pages, 4 figures, presented at 2007 CLEO conferenc
Model of Thermal Wavefront Distortion in Interferometric Gravitational-Wave Detectors I: Thermal Focusing
We develop a steady-state analytical and numerical model of the optical
response of power-recycled Fabry-Perot Michelson laser gravitational-wave
detectors to thermal focusing in optical substrates. We assume that the thermal
distortions are small enough that we can represent the unperturbed intracavity
field anywhere in the detector as a linear combination of basis functions
related to the eigenmodes of one of the Fabry-Perot arm cavities, and we take
great care to preserve numerically the nearly ideal longitudinal phase
resonance conditions that would otherwise be provided by an external
servo-locking control system. We have included the effects of nonlinear thermal
focusing due to power absorption in both the substrates and coatings of the
mirrors and beamsplitter, the effects of a finite mismatch between the
curvatures of the laser wavefront and the mirror surface, and the diffraction
by the mirror aperture at each instance of reflection and transmission. We
demonstrate a detailed numerical example of this model using the MATLAB program
Melody for the initial LIGO detector in the Hermite-Gauss basis, and compare
the resulting computations of intracavity fields in two special cases with
those of a fast Fourier transform field propagation model. Additional
systematic perturbations (e.g., mirror tilt, thermoelastic surface
deformations, and other optical imperfections) can be included easily by
incorporating the appropriate operators into the transfer matrices describing
reflection and transmission for the mirrors and beamsplitter.Comment: 24 pages, 22 figures. Submitted to JOSA
- …
