432 research outputs found

    Decoherence and the rate of entropy production in chaotic quantum systems

    Get PDF
    We show that for an open quantum system which is classically chaotic (a quartic double well with harmonic driving coupled to a sea of harmonic oscillators) the rate of entropy production has, as a function of time, two relevant regimes: For short times it is proportional to the diffusion coefficient (fixed by the system--environment coupling strength). For longer times (but before equilibration) there is a regime where the entropy production rate is fixed by the Lyapunov exponent. The nature of the transition time between both regimes is investigated.Comment: Revtex, 4 pages, 3 figures include

    Time-dependent unitary perturbation theory for intense laser driven molecular orientation

    Full text link
    We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.Comment: 16 pages, 6 figure

    Optimal use of time dependent probability density data to extract potential energy surfaces

    Get PDF
    A novel algorithm was recently presented to utilize emerging time dependent probability density data to extract molecular potential energy surfaces. This paper builds on the previous work and seeks to enhance the capabilities of the extraction algorithm: An improved method of removing the generally ill-posed nature of the inverse problem is introduced via an extended Tikhonov regularization and methods for choosing the optimal regularization parameters are discussed. Several ways to incorporate multiple data sets are investigated, including the means to optimally combine data from many experiments exploring different portions of the potential. Results are presented on the stability of the inversion procedure, including the optimal combination scheme, under the influence of data noise. The method is applied to the simulated inversion of a double well system.Comment: 34 pages, 5 figures, LaTeX with REVTeX and Graphicx-Package; submitted to PhysRevA; several descriptions and explanations extended in Sec. I

    Quantum Geometrodynamics I: Quantum-Driven Many-Fingered Time

    Full text link
    The classical theory of gravity predicts its own demise -- singularities. We therefore attempt to quantize gravitation, and present here a new approach to the quantization of gravity wherein the concept of time is derived by imposing the constraints as expectation-value equations over the true dynamical degrees of freedom of the gravitational field -- a representation of the underlying anisotropy of space. This self-consistent approach leads to qualitatively different predictions than the Dirac and the ADM quantizations, and in addition, our theory avoids the interpretational conundrums associated with the problem of time in quantum gravity. We briefly describe the structure of our functional equations, and apply our quantization technique to two examples so as to illustrate the basic ideas of our approach.Comment: 11, (No Figures), (Typeset using RevTeX

    Theory of four-wave mixing of matter waves from a Bose-Einstein condensate

    Full text link
    A recent experiment [Deng et al., Nature 398, 218(1999)] demonstrated four-wave mixing of matter wavepackets created from a Bose-Einstein condensate. The experiment utilized light pulses to create two high-momentum wavepackets via Bragg diffraction from a stationary Bose-Einstein condensate. The high-momentum components and the initial low momentum condensate interact to form a new momentum component due to the nonlinear self-interaction of the bosonic atoms. We develop a three-dimensional quantum mechanical description, based on the slowly-varying-envelope approximation, for four-wave mixing in Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation. We apply this description to describe the experimental observations and to make predictions. We examine the role of phase-modulation, momentum and energy conservation (i.e., phase-matching), and particle number conservation in four-wave mixing of matter waves, and develop simple models for understanding our numerical results.Comment: 18 pages Revtex preprint form, 13 eps figure

    Del Pezzo surfaces of degree 1 and jacobians

    Full text link
    We construct absolutely simple jacobians of non-hyperelliptic genus 4 curves, using Del Pezzo surfaces of degree 1. This paper is a natural continuation of author's paper math.AG/0405156.Comment: 24 page

    Optimally shaped terahertz pulses for phase retrieval in a Rydberg atom data register

    Get PDF
    We employ Optimal Control Theory to discover an efficient information retrieval algorithm that can be performed on a Rydberg atom data register using a shaped terahertz pulse. The register is a Rydberg wave packet with one consituent orbital phase-reversed from the others (the ``marked bit''). The terahertz pulse that performs the decoding algorithm does so by by driving electron probability density into the marked orbital. Its shape is calculated by modifying the target of an optimal control problem so that it represents the direct product of all correct solutions to the algorithm.Comment: 6 pages, 3 figure

    Economical adjunction of square roots to groups

    Full text link
    How large must an overgroup of a given group be in order to contain a square root of any element of the initial group? We give an almost exact answer to this question (the obtained estimate is at most twice worse than the best possible) and state several related open questions.Comment: 5 pages. A Russian version of this paper is at http://mech.math.msu.su/department/algebra/staff/klyachko/papers.htm V2: minor correction

    Coherent Control of Isotope Separation in HD+ Photodissociation by Strong Fields

    Full text link
    The photodissociation of the HD+ molecular ion in intense short- pulsed linearly polarized laser fields is studied using a time- dependent wave-packet approach where molecular rotation is fully included. We show that applying a coherent superposition of the fundamental radiation with its second harmonic can lead to asymmetries in the fragment angular distributions, with significant differences between the hydrogen and deuterium distributions in the long wavelength domain where the permanent dipole is most efficient. This effect is used to induce an appreciable isotope separation.Comment: Physical Review Letters, 1995 (in press). 4 pages in revtex format, 3 uuencoded figures. Full postcript version available at: http://chemphys.weizmann.ac.il/~charron/prl.ps or ftp://scipion.ppm.u-psud.fr/coherent.control/prl.p
    • …
    corecore