3,977 research outputs found

    Effects of Bose-Einstein Condensation on forces among bodies sitting in a boson heat bath

    Get PDF
    We explore the consequences of Bose-Einstein condensation on two-scalar-exchange mediated forces among bodies that sit in a boson gas. We find that below the condensation temperature the range of the forces becomes infinite while it is finite at temperatures above condensation.Comment: 10 pages, 2 figure

    Long range neutrino forces in the cosmic relic neutrino background

    Get PDF
    Neutrinos mediate long range forces among macroscopic bodies in vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale T1T^{-1}, the relic neutrinos completely screen off the 2-neutrino exchange force, whereas for small distances the interaction remains unaffected.Comment: 8 pages, 2 figure

    Dynamical Casimir-Polder interaction between an atom and surface plasmons

    Full text link
    We investigate the time-dependent Casimir-Polder potential of a polarizable two-level atom placed near a surface of arbitrary material, after a sudden change in the parameters of the system. Different initial conditions are taken into account. For an initially bare ground-state atom, the time-dependent Casimir-Polder energy reveals how the atom is "being dressed" by virtual, matter-assisted photons. We also study the transient behavior of the Casimir-Polder interaction between the atom and the surface starting from a partially dressed state, after an externally induced change in the atomic level structure or transition dipoles. The Heisenberg equations are solved through an iterative technique for both atomic and field operators in the medium-assisted electromagnetic field quantization scheme. We analyze in particular how the time evolution of the interaction energy depends on the optical properties of the surface, in particular on the dispersion relationof surface plasmon polaritons. The physical significance and the limits of validity of the obtained results are discussed in detail.Comment: 12 pages, 8 figure

    Initial correlations effects on decoherence at zero temperature

    Full text link
    We consider a free charged particle interacting with an electromagnetic bath at zero temperature. The dipole approximation is used to treat the bath wavelengths larger than the width of the particle wave packet. The effect of these wavelengths is described then by a linear Hamiltonian whose form is analogous to phenomenological Hamiltonians previously adopted to describe the free particle-bath interaction. We study how the time dependence of decoherence evolution is related with initial particle-bath correlations. We show that decoherence is related to the time dependent dressing of the particle. Moreover because decoherence induced by the T=0 bath is very rapid, we make some considerations on the conditions under which interference may be experimentally observed.Comment: 16 pages, 1 figur

    Effective Non-Hermitian Hamiltonians for Studying Resonance Statistics in Open Disordered Systems

    Full text link
    We briefly discuss construction of energy-dependent effective non-hermitian hamiltonians for studying resonances in open disordered systemsComment: Latex, 20 pages, 1 fig. Expanded version of a talk at the Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics IX, June 21-24 2010, Zhejiang University, Hangzhou, China. Accepted for publication in the Internationa Journal of Theoretical Physics (Springer Verlag

    Generalized Swanson models and their solutions

    Full text link
    We analyze a class of non-Hermitian quadratic Hamiltonians, which are of the form H=AA+αA2+βA2 H = {\cal{A}}^{\dagger} {\cal{A}} + \alpha {\cal{A}} ^2 + \beta {\cal{A}}^{\dagger 2} , where α,β \alpha, \beta are real constants, with αβ \alpha \neq \beta , and A{\cal{A}}^{\dagger} and A{\cal{A}} are generalized creation and annihilation operators. Thus these Hamiltonians may be classified as generalized Swanson models. It is shown that the eigenenergies are real for a certain range of values of the parameters. A similarity transformation ρ\rho, mapping the non-Hermitian Hamiltonian HH to a Hermitian one hh, is also obtained. It is shown that HH and hh share identical energies. As explicit examples, the solutions of a couple of models based on the trigonometric Rosen-Morse I and the hyperbolic Rosen-Morse II type potentials are obtained. We also study the case when the non-Hermitian Hamiltonian is PT{\cal{PT}} symmetric.Comment: 17 page

    Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law

    Get PDF
    The exchange of light pseudoscalars between fermions leads to a spin-independent potential in order g^4, where g is the Yukawa pseudoscalar-fermion coupling constant. This potential gives rise to detectable violations of both the weak equivalence principle (WEP) and the gravitational inverse-square law (ISL), even if g is quite small. We show that when previously derived WEP constraints are combined with those arisingfrom ISL tests, a direct experimental limit on the Yukawa coupling of light pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6 \times 10^-7), along with a new (and significantly improved) limit on the coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical Review Letters

    Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry

    Full text link
    We study supersymmetry of a self-isospectral one-gap Poschl-Teller system in the light of a mirror symmetry that is based on spatial and shift reflections. The revealed exotic, partially broken nonlinear supersymmetry admits seven alternatives for a grading operator. One of its local, first order supercharges may be identified as a Hamiltonian of an associated one-gap, non-periodic Bogoliubov-de Gennes system. The latter possesses a nonlinear supersymmetric structure, in which any of the three non-local generators of a Clifford algebra may be chosen as the grading operator. We find that the supersymmetry generators for the both systems are the Darboux-dressed integrals of a free spin-1/2 particle in the Schrodinger picture, or of a free massive Dirac particle. Nonlocal Foldy- Wouthuysen transformations are shown to be involved in the supersymmetric structure.Comment: 20 pages, comment added. Published versio

    Topological Dislocations and Mixed State of Charge Density Waves

    Full text link
    We discuss the possibility of the ``mixed state'' in incommensurate charge density waves with three-dimensional order. It is shown that the mixed state can be created by applying an electric field perpendicular to the chains. This state consists of topological dislocations induced by the external field and is therefore similar to the mixed states of superfluids (type-II superconductor or liquid Helium II). However, the peculiar coupling of charge density waves with the electric field strongly modifies the nature of the mixed state compared to the conventional superfluids. The field and temperature dependence of the properties of the mixed state are studied, and some experimental aspects are discussed.Comment: 10 pages, Revtex format, no figures, to appear in Phys. Rev. Let

    On CP-Odd Effects in K_L \to 2\pi and K^{\pm} \to \pi^{\pm} \pi^{\pm} \pi^{\mp} Decays Generated by Direct CP Violation

    Full text link
    The amplitudes of the K^{\pm} \to 3\pi and K \to 2\pi decays are expressed in terms of different combinations of one and the same set of CP-conserving and CP-odd parameters. Extracting the magnitudes of these parameters from the data on K \to 2\pi decays, we estimate an expected CP-odd difference between the values of the slope parameters g^+ and g^- of the energy distributions of "odd" pions in K^+ \to \pi^+\pi^+\pi^- and K^- \to \pi^-\pi^-\pi^+ decays.Comment: 12 pages, no figure
    corecore