We investigate the time-dependent Casimir-Polder potential of a polarizable
two-level atom placed near a surface of arbitrary material, after a sudden
change in the parameters of the system. Different initial conditions are taken
into account. For an initially bare ground-state atom, the time-dependent
Casimir-Polder energy reveals how the atom is "being dressed" by virtual,
matter-assisted photons. We also study the transient behavior of the
Casimir-Polder interaction between the atom and the surface starting from a
partially dressed state, after an externally induced change in the atomic level
structure or transition dipoles. The Heisenberg equations are solved through an
iterative technique for both atomic and field operators in the medium-assisted
electromagnetic field quantization scheme. We analyze in particular how the
time evolution of the interaction energy depends on the optical properties of
the surface, in particular on the dispersion relationof surface plasmon
polaritons. The physical significance and the limits of validity of the
obtained results are discussed in detail.Comment: 12 pages, 8 figure