6,022 research outputs found

    Phonon Squeezing in a Superconducting Molecular Transistor

    Full text link
    Josephson transport through a single molecule or carbon nanotube is considered in the presence of a local vibrational mode coupled to the electronic charge. The ground-state solution is obtained exactly in the limit of a large superconducting gap, and is extended to the general case by variational analysis. Coherent charge fluctuations are entangled with non-classical phonon states. The Josephson current induces squeezing of the phonon mode, which is controlled by the superconducting phase difference and by the junction asymmetry. Optical probes of non-classical phonon states are briefly discussed

    Spin-orbit induced chirality of Andreev states in Josephson junctions

    Full text link
    We study Josephson junctions (JJs) in which the region between the two superconductors is a multichannel system with Rashba spin-orbit coupling (SOC) where a barrier or a quantum point contact (QPC) is present. These systems might present unconventional Josephson effects such as Josephson currents for zero phase difference or critical currents that \textit{depend on} the current direction. Here, we discuss how the spin polarizing properties of the system in the normal state affect the spin characteristic of the Andreev bound states inside the junction. This results in a strong correlation between the spin of the Andreev states and the direction in which they transport Cooper pairs. While the current-phase relation for the JJ at zero magnetic field is qualitatively unchanged by SOC, in the presence of a weak magnetic field a strongly anisotropic behavior and the mentioned anomalous Josephson effects follow. We show that the situation is not restricted to barriers based on constrictions such as QPCs and should generically arise if in the normal system the direction of the carrier's spin is linked to its direction of motion.Comment: 19 pages, 9 figures. To appear in PR

    Anomalous Josephson Current in Junctions with Spin-Polarizing Quantum Point Contacts

    Full text link
    We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron gas with Rashba spin-orbit coupling. The point contact acts as a spin filter when embedded in a circuit with normal electrodes. We show that with an in-plane external magnetic field an anomalous supercurrent appears even for zero phase difference between the superconducting electrodes. In addition, the external field induces large critical current asymmetries between the two flow directions, leading to supercurrent rectifying effects.Comment: 4 pages, 4 figures, to appear in PR

    Emergence of a negative charging energy in a metallic dot capacitively coupled to a superconducting island

    Full text link
    We consider the hybrid setup formed by a metallic dot, capacitively coupled to a superconducting island S connected to a bulk superconductor by a Josephson junction. Charge fluctuations in S act as a dynamical gate and overscreen the electronic repulsion in the metallic dot, producing an attractive interaction between two additional electrons. As the offset charge of the metallic dot is increased, the dot charging curve shows positive steps (+2e+2e) followed by negative ones (−e-e) signaling the occurrence of a negative differential capacitance. A proposal for experimental detection is given, and potential applications in nanoelectronics are mentioned.Comment: Revised version, 4 pages, 4 figure

    Edge channel mixing induced by potential steps in an integer quantum Hall system

    Full text link
    We investigate the coherent mixing of co-propagating edge channels in a quantum Hall bar produced by step potentials. In the case of two edge channels it is found that, although a single step induces only a few percent mixing, a series of steps could yield 50% mixing. In addition, a strong mixing is found when the potential height of a single step allows a different number of edge channels on the two sides of the step. Charge density probability has been also calculated even for the case where the step is smoothened.Comment: final version: 7 pages, 6 figure

    What is the value of the superconducting gap of a F/S/F trilayer ?

    Full text link
    Based on the model of F/S/F trilayer with atomic thickness [A. Buzdin and M. Daumens, cond-mat/0305320] we discuss the relative roles of pair-breaking and proximity effects, as a function of the exchange field, of disorder and of a finite thickness in the superconducting layer. The exchange field can be small (weak ferromagnets) or large (strong ferromagnets) compared to the superconducting gap. With weak ferromagnets we show the existence of a reentrant superconducting gap for the F/S/F trilayer with atomic thickness in the parallel alignment (equivalent to the F/S bilayer). Qualitatively small disorder is equivalent to reducing the value of the hopping parameters. In the presence of a finite thickness in the superconducting layer the superconducting gap in the antiparallel alignment is larger than in the parallel alignment, meaning that pair breaking dominates over the proximity effect.Comment: 7 pages, 3 figure

    The Redox Couple of the Cytochrome \u3cem\u3ec\u3c/em\u3e Cyanide Complex: The Contribution of Heme Iron Ligation to the Structural Stability, Chemical Reactivity, and Physiological Behavior of Horse Cytochrome \u3cem\u3ec\u3c/em\u3e

    Get PDF
    Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c–cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0′ was −240 mV versus SHE, equivalent to −23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0′, the binding constant of cyanide to the reduced protein was estimated to be 4.7 × 10−3 LM−1 or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 Jmol−1K−1 (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed

    Addendum to Finite-size effects on multibody neutrino exchange

    Get PDF
    The interaction energy of the neutrons due to massless neutrino exchange in a neutron star has recently been proved, using an effective theory, to be extremely small and infrared-safe. Our comment here is of conceptual order: two approaches to compute the total interaction energy density have recently been proposed. Here, we study the connection between these two approaches. From CP invariance, we argue that the resulting interaction energy has to be even in the parameter b=−GFnn/2b=-G_F n_n /\sqrt{2}, which expresses the static neutrino potential created by a neutron medium of density nnn_n.Comment: Latex file (Revtex), 9 pages, 1 figure, one reference change

    Spin noise and Bell inequalities in a realistic superconductor-quantum dot entangler

    Full text link
    Charge and spin current correlations are analyzed in a source of spin-entangled electrons built from a superconductor and two quantum dots in parallel. In addition to the ideal (crossed Andreev) channel, parasitic channels (direct Andreev and cotunneling) and spin flip processes are fully described in a density matrix framework. The way they reduce both the efficiency and the fidelity of the entangler is quantitatively described by analyzing the zero-frequency noise correlations of charge current as well as spin current in the two output branches. Spin current noise is characterized by a spin Fano factor, equal to 0 (total current noise) and -1 (crossed correlations) for an ideal entangler. The violation of the Bell inequalities, as a test of non-locality (entanglement) of split pairs, is formulated in terms of the correlations of electron charge and spin numbers counted in a specific time window Ï„\tau. The efficiency of the test is analyzed, comparing Ï„\tau to the various time scales in the entangler operation.Comment: 8 pages, 5 figures, references added, to appear in Phys. Rev.

    Dynamical Generation of Extended Objects in a 1+11+1 Dimensional Chiral Field Theory: Non-Perturbative Dirac Operator Resolvent Analysis

    Get PDF
    We analyze the 1+11+1 dimensional Nambu-Jona-Lasinio model non-perturbatively. In addition to its simple ground state saddle points, the effective action of this model has a rich collection of non-trivial saddle points in which the composite fields \sigx=\lag\bar\psi\psi\rag and \pix=\lag\bar\psi i\gam_5\psi\rag form static space dependent configurations because of non-trivial dynamics. These configurations may be viewed as one dimensional chiral bags that trap the original fermions (``quarks") into stable extended entities (``hadrons"). We provide explicit expressions for the profiles of these objects and calculate their masses. Our analysis of these saddle points is based on an explicit representation we find for the diagonal resolvent of the Dirac operator in a \{\sigx, \pix\} background which produces a prescribed number of bound states. We analyse in detail the cases of a single as well as two bound states. We find that bags that trap NN fermions are the most stable ones, because they release all the fermion rest mass as binding energy and become massless. Our explicit construction of the diagonal resolvent is based on elementary Sturm-Liouville theory and simple dimensional analysis and does not depend on the large NN approximation. These facts make it, in our view, simpler and more direct than the calculations previously done by Shei, using the inverse scattering method following Dashen, Hasslacher, and Neveu. Our method of finding such non-trivial static configurations may be applied to other 1+11+1 dimensional field theories
    • …
    corecore