1,075 research outputs found
The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord
Sensory axonal projections into the spinal cord display a highly stereotyped pattern of T- or Y-shaped axon bifurcation at the dorsal root entry zone (DREZ). Here, we provide evidence that embryonic mice with an inactive receptor guanylyl cyclase Npr2 or deficient for cyclic guanosine monophosphate-dependent protein kinase I (cGKI) lack the bifurcation of sensory axons at the DREZ, i.e., the ingrowing axon either turns rostrally or caudally. This bifurcation error is maintained to mature stages. In contrast, interstitial branching of collaterals from primary stem axons remains unaffected, indicating that bifurcation and interstitial branching are processes regulated by a distinct molecular mechanism. At a functional level, the distorted axonal branching at the DREZ is accompanied by reduced synaptic input, as revealed by patch clamp recordings of neurons in the superficial layers of the spinal cord. Hence, our data demonstrate that Npr2 and cGKI are essential constituents of the signaling pathway underlying axonal bifurcation at the DREZ and neuronal connectivity in the dorsal spinal cord
Carrier-Induced Magnetic Circular Dichloism in the Magnetoresistive Pyrochlore Tl2Mn2O7
Infrared magnetic circular dichloism (MCD), or equivalently magneto-optical
Kerr effect, has been measured on the Tl2Mn2O7 pyrochlore, which is well known
for exhibiting a large magnetoresistance around the Curie temperature T_C ~ 120
K. A circularly polarized, infrared synchrotron radiation is used as the light
source. A pronounced MCD signal is observed exactly at the plasma edge of the
reflectivity near and below T_c. However, contrary to the conventional behavior
of MCD for ferromagnets, the observed MCD of Tl2Mn2O7 grows with the applied
magnetic field, and not scaled with the internal magnetization. It is shown
that these results can be basically understood in terms of a classical
magnetoplasma resonance. The absence of a magnetization-scaled MCD indicates a
weak spin-orbit coupling of the carriers in Tl2Mn2O7. We discuss the present
results in terms of the microscopic electronic structures of Tl2Mn2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
Effect of Oscillating Landau Bandwidth on the Integer Quantum Hall Effect in a Unidirectional Lateral Superlattice
We have measured activation gaps for odd-integer quantum Hall states in a
unidirectional lateral superlattice (ULSL) -- a two-dimensional electron gas
(2DEG) subjected to a unidirectional periodic modulation of the electrostatic
potential. By comparing the activation gaps with those simultaneously measured
in the adjacent section of the same 2DEG sample without modulation, we find
that the gaps are reduced in the ULSL by an amount corresponding to the width
acquired by the Landau levels through the introduction of the modulation. The
decrement of the activation gap varies with the magnetic field following the
variation of the Landau bandwidth due to the commensurability effect. Notably,
the decrement vanishes at the flat band conditions.Comment: 7 pages, 6 figures, minor revisio
cGMP-Dependent Protein Kinase I Is Crucial for Angiogenesis and Postnatal Vasculogenesis
Background Endothelium-derived nitric oxide plays an important role for the bone marrow microenvironment. Since several important effects of nitric oxide are mediated by cGMP-dependent pathways, we investigated the role of the cGMP downstream effector cGMP-dependent protein kinase I (cGKI) on postnatal neovascularization. Methodology/Principal Findings In a disc neovascularization model, cGKI -/- mice showed an impaired neovascularization as compared to their wild-type (WT) littermates. Infusion of WT, but not cGKI -/- bone marrow progenitors rescued the impaired ingrowth of new vessels in cGKI-deficient mice. Bone marrow progenitors from cGKI -/- mice showed reduced proliferation and survival rates. In addition, we used cGKI alpha leucine zipper mutant (LZM) mice as model for cGKI deficiency. LZM mice harbor a mutation in the cGKI alpha leucine zipper that prevents interaction with downstream signaling molecules. Consistently, LZM mice exhibited reduced numbers of vasculogenic progenitors and impaired neovascularization following hindlimb ischemia compared to WT mice. Conclusions/Significance Our findings demonstrate that the cGMP-cGKI pathway is critical for postnatal neovascularization and establish a new role for cGKI in vasculogenesis, which is mediated by bone marrow-derived progenitors
Catch-up-ESUS - follow-up in embolic stroke of undetermined source (ESUS) in a prospective, open-label, observational study: study protocol and initial baseline data
Introduction. So far there is no uniform, commonly accepted diagnostic and therapeutic algorithm for patients with embolic stroke of undetermined source (ESUS). Recent clinical trials on secondary stroke prevention in ESUS did not support the use of oral anticoagulation. As ESUS comprises heterogeneous subgroups including a wide age-range, concomitant patent foramen ovale (PFO), and variable probability for atrial fibrillation (AF), an individualised approach is urgently needed. This prospective registry study aims to provide initial data towards an individual, structured diagnostic and therapeutic approach in ESUS patients.
Methods and analysis. The open-label, investigator-initiated, prospective, single-centre, observational registry study (Catch-up-ESUS) started in 01/2018. Consecutive ESUS patients ≥18 years who give informed consent are included and will be followed up for 3 years. Stratified by age <60 or ≥60 years, the patients are processed following a standardised diagnostic and treatment algorithm with an interdisciplinary design involving neurologists and cardiologists. Depending on the strata, patients receive a transesophageal echocardiogram; all patients receive an implantable cardiac monitor. Patients <60 years with PFO and without evidence of concomitant AF are planned for PFO closure within 6 months after stroke. The current diagnostic and therapeutic workup of ESUS patients requires improvement by both standardisation and a more individualised approach. Catch-up-ESUS will provide important data with respect to AF detection and PFO closure and will estimate stratified stroke recurrence rates after ESUS.
Ethics and dissemination. The study has been approved by the responsible ethics committee at the Ludwig Maximilian University, Munich, Germany (project number 17–685). Catch-Up-ESUS is conducted in accordance with the Declaration of Helsinki. All patients will have to give written informed consent or, if unable to give consent themselves, their legal guardian will have to provide written informed consent for their participation. The first observation period of the registry study is 1 year, followed by the first publication of the results including follow-up of the patients. Further publications will be considered according the predefined individual follow-up dates of the stroke patients up to 36 months
A Pilot Study with a Novel Setup for Collaborative Play of the Humanoid Robot KASPAR with children with autism
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article describes a pilot study in which a novel experimental setup, involving an autonomous humanoid robot, KASPAR, participating in a collaborative, dyadic video game, was implemented and tested with children with autism, all of whom had impairments in playing socially and communicating with others. The children alternated between playing the collaborative video game with a neurotypical adult and playing the same game with the humanoid robot, being exposed to each condition twice. The equipment and experimental setup were designed to observe whether the children would engage in more collaborative behaviours while playing the video game and interacting with the adult than performing the same activities with the humanoid robot. The article describes the development of the experimental setup and its first evaluation in a small-scale exploratory pilot study. The purpose of the study was to gain experience with the operational limits of the robot as well as the dyadic video game, to determine what changes should be made to the systems, and to gain experience with analyzing the data from this study in order to conduct a more extensive evaluation in the future. Based on our observations of the childrens’ experiences in playing the cooperative game, we determined that while the children enjoyed both playing the game and interacting with the robot, the game should be made simpler to play as well as more explicitly collaborative in its mechanics. Also, the robot should be more explicit in its speech as well as more structured in its interactions. Results show that the children found the activity to be more entertaining, appeared more engaged in playing, and displayed better collaborative behaviours with their partners (For the purposes of this article, ‘partner’ refers to the human/robotic agent which interacts with the children with autism. We are not using the term’s other meanings that refer to specific relationships or emotional involvement between two individuals.) in the second sessions of playing with human adults than during their first sessions. One way of explaining these findings is that the children’s intermediary play session with the humanoid robot impacted their subsequent play session with the human adult. However, another longer and more thorough study would have to be conducted in order to better re-interpret these findings. Furthermore, although the children with autism were more interested in and entertained by the robotic partner, the children showed more examples of collaborative play and cooperation while playing with the human adult.Peer reviewe
Phylogeographical Analysis Reveals the Historic Origin, Emergence, and Evolutionary Dynamics of Methicillin-Resistant Staphylococcus aureus ST228.
Methicillin-resistant Staphylococcus aureus (MRSA) is a common healthcare-associated pathogen that remains a major public health concern. Sequence type 228 (ST228) was first described in Germany and spread to become a successful MRSA clone in several European countries. In 2000, ST228 emerged in Lausanne and has subsequently caused several large outbreaks. Here, we describe the evolutionary history of this clone and identify the genetic changes underlying its expansion in Switzerland.
We aimed to understand the phylogeographic and demographic dynamics of MRSA ST228/ST111 by sequencing 530 representative isolates of this clone that were collected from 14 European countries between 1997 and 2012.
The phylogenetic analysis revealed distinct lineages of ST228 isolates associated with specific geographic origins. In contrast, isolates of ST111, which is a single locus variant of ST228 sharing the same spa type t041, formed a monophyletic cluster associated with multiple countries. The evidence points to a German origin of the sampled population, with the basal German lineage being characterized by spa type t001. The highly successful Swiss ST228 lineage diverged from this progenitor clone through the loss of the aminoglycoside-streptothricin resistance gene cluster and the gain of mupirocin resistance. This lineage was introduced first in Geneva and was subsequently introduced into Lausanne.
Our results reveal the radiation of distinct lineages of MRSA ST228 from a German progenitor, as the clone spread into different European countries. In Switzerland, ST228 was introduced first in Geneva and was subsequently introduced into Lausanne
cGMP-Dependent Protein Kinase Type I Is Implicated in the Regulation of the Timing and Quality of Sleep and Wakefulness
Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3′,5′-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1–4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep
Looking backward: From Euler to Riemann
We survey the main ideas in the early history of the subjects on which
Riemann worked and that led to some of his most important discoveries. The
subjects discussed include the theory of functions of a complex variable,
elliptic and Abelian integrals, the hypergeometric series, the zeta function,
topology, differential geometry, integration, and the notion of space. We shall
see that among Riemann's predecessors in all these fields, one name occupies a
prominent place, this is Leonhard Euler. The final version of this paper will
appear in the book \emph{From Riemann to differential geometry and relativity}
(L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017
Selective involvement of serum response factor in pressure-induced myogenic tone in resistance arteries
OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9+/-2.3%) compared with control (16.3+/-3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries
- …