74 research outputs found

    Eclipsing binary systems as tests of low-mass stellar evolution theory

    Full text link
    Stellar fundamental properties (masses, radii, effective temperatures) can be extracted from observations of eclipsing binary systems with remarkable precision, often better than 2%. Such precise measurements afford us the opportunity to confront the validity of basic predictions of stellar evolution theory, such as the mass-radius relationship. A brief historical overview of confrontations between stellar models and data from eclipsing binaries is given, highlighting key results and physical insight that have led directly to our present understanding. The current paradigm that standard stellar evolution theory is insufficient to describe the most basic relation, that of a star's mass to its radius, along the main sequence is then described. Departures of theoretical expectations from empirical data, however, provide a rich opportunity to explore various physical solutions, improving our understanding of important stellar astrophysical processes.Comment: 9 pages, 2 figures. To appear in proceedings of "Living Together: Planets, Host Stars, and Binaries" convened in memory of Zdenek Kopa

    Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. III. A Consistent 10 Myr Age for the Upper Scorpius OB Association

    Full text link
    When determining absolute ages of identifiably young stellar populations, results strongly depend on which stars are studied. Cooler (K, M) stars typically yield ages that are systematically younger than warmer (A, F, G) stars by a factor of two. I explore the possibility that these age discrepancies are the result of magnetic inhibition of convection in cool young stars by using magnetic stellar evolution isochrones to determine the age of the Upper Scorpius subgroup of the Scorpius-Centaurus OB Association. A median age of 10 Myr consistent across spectral types A through M is found, except for a subset of F-type stars that appear significantly older. Agreement is shown for ages derived from the Hertzsprung-Russell diagram and from the empirical mass-radius relationship defined by eclipsing multiple-star systems. Surface magnetic field strengths required to produce agreement are of order 2.5 kG and are predicted from a priori estimates of equipartition values. A region in the HR diagram is identified that plausibly connects stars whose structures are weakly influenced by the presence of magnetic fields with those whose structures are strongly influenced by magnetic fields. The models suggest this region is characterized by stars with rapidly thinning outer convective envelopes where the radiative core mass is greater than 75% of the total stellar mass. Furthermore, depletion of lithium predicted from magnetic models appears in better agreement with observed lithium equivalent widths than predictions from non-magnetic models. These results suggest that magnetic inhibition of convection plays an important role in the early evolution of low-mass stars and that it may be responsible for noted age discrepancies in young stellar populations.Comment: 11 pages, 6 figures, 2 tables. Accepted to A&A. Models available online: https://github.com/gfeiden/MagneticUpperSco

    The Interior Structure Constants as an Age Diagnostic for Low-Mass, Pre-Main Sequence Detached Eclipsing Binary Stars

    Get PDF
    We propose a novel method for determining the ages of low-mass, pre-main sequence stellar systems using the apsidal motion of low-mass detached eclipsing binaries. The apsidal motion of a binary system with an eccentric orbit provides information regarding the interior structure constants of the individual stars. These constants are related to the normalized stellar interior density distribution and can be extracted from the predictions of stellar evolution models. We demonstrate that low-mass, pre-main sequence stars undergoing radiative core contraction display rapidly changing interior structure constants (greater than 5% per 10 Myr) that, when combined with observational determinations of the interior structure constants (with 5 -- 10% precision), allow for a robust age estimate. This age estimate, unlike those based on surface quantities, is largely insensitive to the surface layer where effects of magnetic activity are likely to be most pronounced. On the main sequence, where age sensitivity is minimal, the interior structure constants provide a valuable test of the physics used in stellar structure models of low-mass stars. There are currently no known systems where this technique is applicable. Nevertheless, the emphasis on time domain astronomy with current missions, such as Kepler, and future missions, such as LSST, has the potential to discover systems where the proposed method will be observationally feasible.Comment: Accepted for publication in ApJ, 8 pages, 3 figure

    Self-Consistent Magnetic Stellar Evolution Models of the Detached, Solar-Type Eclipsing Binary EF Aquarii

    Get PDF
    We introduce a new one-dimensional stellar evolution code, based on the existing Dartmouth code, that self-consistently accounts for the presence of a globally pervasive magnetic field. The methods involved in perturbing the equations of stellar structure, the equation of state, and the mixing-length theory of convection are presented and discussed. As a first test of the code's viability, stellar evolution models are computed for the components of a solar-type, detached eclipsing binary (DEB) system, EF Aquarii, shown to exhibit large disagreements with stellar models. The addition of the magnetic perturbation corrects the radius and effective temperature discrepancies observed in EF Aquarii. Furthermore, the required magnetic field strength at the model photosphere is within a factor of two of the magnetic field strengths estimated from the stellar X-ray luminosities measured by ROSAT and those predicted from Ca II K line core emission. These models provide firm evidence that the suppression of thermal convection arising from the presence of a magnetic field is sufficient to significantly alter the structure of solar-type stars, producing noticeably inflated radii and cooler effective temperatures. The inclusion of magnetic effects within a stellar evolution model has a wide range of applications, from DEBs and exoplanet host stars to the donor stars of cataclysmic variables.Comment: Accepted for publication in ApJ, 15 pages, 3 figures; Misprints are corrected in version

    Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. II. Fully Convective Main Sequence Stars

    Get PDF
    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main sequence stars in DEBs.Comment: Accepted for publication in ApJ, 17 pages, 11 figures, 2 table

    Revised age for CM Draconis and WD 1633+572: Toward a resolution of model-observation radius discrepancies

    Get PDF
    We report an age revision for the low-mass detached eclipsing binary CM Draconis and its common proper motion companion, WD 1633+572. An age of 8.5 ±\pm 3.5 Gyr is found by combining an age estimate for the lifetime of WD 1633+572 and an estimate from galactic space motions. The revised age is greater than a factor of two older than previous estimates. Our results provide consistency between the white dwarf age and the system's galactic kinematics, which reveal the system is a highly probable member of the galactic thick disk. We find the probability that CM Draconis and WD 1633+572 are members of the thick disk is 8500 times greater than the probability that they are members of the thin disk and 170 times greater than the probability they are halo interlopers. If CM Draconis is a member of the thick disk, it is likely enriched in α\alpha-elements compared to iron by at least 0.2 dex relative to the Sun. This leads to the possibility that previous studies under-estimate the [Fe/H] value, suggesting the system has a near-solar [Fe/H]. Implications for the long-standing discrepancies between the radii of CM Draconis and predictions from stellar evolution theory are discussed. We conclude that CM Draconis is only inflated by about 2% compared to stellar evolution predictions.Comment: Accepted to A&A, 7 pages, 3 figures, 1 tabl

    Revised Age for CM Draconis and WD 1633+ 572-Toward a Resolution of Model-Observation Radius Discrepancies

    Get PDF
    We report an age revision for the low-mass detached eclipsing binary CM Draconis and its common proper motion companion, WD 1633+572. An age of 8.5 +/- 3.5 Gyr is found by combining an age estimate for the lifetime of WD 1633+572 and an estimate from galactic space motions. The revised age is greater than a factor of two older than previous estimates. Our results provide consistency between the white dwarf age and the system\u27s galactic kinematics, which reveal the system is a highly probable me
    • …
    corecore