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ABSTRACT
We introduce a new one-dimensional stellar evolution code,based on the existing Dartmouth code, that

self-consistently accounts for the presence of a globally pervasive magnetic field. The methods involved in
perturbing the equations of stellar structure, the equation of state, and the mixing-length theory of convection
are presented and discussed. As a first test of the code’s viability, stellar evolution models are computed
for the components of a solar-type, detached eclipsing binary (DEB) system, EF Aquarii, shown to exhibit
large disagreements with stellar models. The addition of the magnetic perturbation corrects the radius and
effective temperature discrepancies observed in EF Aquarii. Furthermore, the required magnetic field strength
at the model photosphere is within a factor of two of the magnetic field strengths estimated from the stellar
X-ray luminosities measured byROSAT and those predicted from CaII K line core emission. These models
provide firm evidence that the suppression of thermal convection arising from the presence of a magnetic field
is sufficient to significantly alter the structure of solar-type stars, producing noticeably inflated radii and cooler
effective temperatures. The inclusion of magnetic effectswithin a stellar evolution model has a wide range of
applications, from DEBs and exoplanet host stars to the donor stars of cataclysmic variables.
Subject headings: binaries: eclipsing — stars: evolution — stars: individual(EF Aquarii) — stars: interiors —

stars: low-mass — stars: magnetic field

1. INTRODUCTION

The vast array of physics incorporated in standard low-
mass stellar evolution models (see e.g.,Chabrier & Baraffe
1997; Baraffe et al. 1998; Dotter et al. 2007, 2008, and ref-
erences therein) appears to be insufficient for predicting the
properties of low-mass stars. Studies of detached eclipsing
binary (DEB) systems allow for a very precise determination
of the mass and radius of the individual stellar components
with uncertainties commonly below 2%. Over the past two
decades, these precision studies have accumulated strong ev-
idence that the radii predicted by low-mass stellar evolution
models are deflated compared to the observations, at a given
mass (e.g.,Popper 1997; Torres & Ribas 2002; Ribas 2006;
Morales et al. 2009; Torres et al. 2010; Kraus et al. 2011).
Typically quoted is that DEB radii appear to be systemati-
cally 10% larger than model predictions and DEB effective
temperatures are 5% cooler than the models imply. Further
evidence has been garnered by studies of single low-mass
stars (Berger et al. 2006; Morales et al. 2008), which confirm
the aforementioned trends. Although,Boyajian et al.(2012)
present results that may be interpreted as counter to these
claims.

Recent work has shown that the disagreements may not be
as severe as previously believed, when the age and metallic-
ity of the DEBs are considered (Feiden & Chaboyer 2012).
Still, many DEB systems display moderately inflated radii
(less than 5%) with a small subset displaying radically in-
flated radii (upward of 10%) compared to stellar models
(Feiden & Chaboyer 2012; Terrien et al. 2012). This modest
radius offset between observations and models and the pres-
ence of strongly inflated stars, suggests that stellar evolution
models must invoke new physics to account for the appear-

1 Neukom Graduate Fellow.

ance of inflated radii.
Implicated as the culprit for the observed inflated radii

and cooler effective temperatures is magnetic activity (Ribas
2006; López-Morales 2007; Morales et al. 2008). The sys-
tems at the heart of the problem are often close binaries with
short orbital periods. Tidal synchronization of the compo-
nents acts to spin-up the rotation rate of each star, enhanc-
ing the dynamo mechanism and thus supporting a stronger
magnetic field within each. While there are a number of di-
rect magnetic field measurements for single stars, there are
few among fast rotating binaries. Instead, the hypothesis is
reinforced by the presence of strong chromospheric Hα emis-
sion (Morales et al. 2008; Stassun et al. 2012), chromospheric
Ca II H and K emission (Skumanich et al. 1975), as well as
coronal X-ray emission (López-Morales 2007) among inflated
stars. The presence of such emission features is consideredto
be the result of the dissipation of magnetic energy in the stel-
lar atmosphere.

There are, however, stars from DEBs that display inflated
radii, despite existing in long-period systems. Both LSPM
J1112+7626 (Irwin et al. 2011) and Kepler-16 (Doyle et al.
2011; Winn et al. 2011; Bender et al. 2012) have orbital pe-
riods of about 41 days, suggesting that the components are
tidally unaffected by the presence of their companion. It is
possible that these stars have not had sufficient time to shed
angular momentum (Skumanich 1972), preserving strong
magnetic fields that they likely possessed near the zero-age
main sequence. Whether the low-mass stars in these systems
are still magnetically active enough to affect the stellar radius
remains unclear. The work byWinn et al.(2011) appears to
suggest that Kepler-16 is still relatively young (2 – 4 Gyr)
as the primary is more active than the Sun, based on CaII
line emission. This supports the notion that magnetic fields
may be influencing the structure of each component. On the
other hand, the age of LSPM J1112+7626, estimated from

http://arxiv.org/abs/1210.6177v2
mailto:Gregory.A.Feiden.GR@Dartmouth.edu
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gyrochronology, reveals that it is approximately 9 Gyr old
(Barnes 2010), supporting the notion that magnetic activity is
likely not playing a prominent role in either star’s evolution.

Further complicating our picture of low-mass DEBs, KOI-
126 (Carter et al. 2011) curiously matches standard stel-
lar evolution models (Feiden et al. 2011; Spada & Demarque
2012). The mass of KOI-126 B and C and their orbital period
are very similar to CM Draconis, one of the quintessential
low-mass DEB systems displaying inflated radii (Lacy 1977;
Morales et al. 2009; Terrien et al. 2012). It is interesting,
then, that stellar evolution models would even come close to
accurately predicting the observed stellar properties of KOI-
126. Given what is known about CM Draconis, one would
expect KOI-126 to display inflated radii as a consequence of
moderate magnetic activity. Although,MacDonald & Mullan
(2012) speculate that KOI-126 should, in fact, not be terribly
active and find it unsurprising that standard models should fit
the system so well.

Despite the identification of a potential culprit responsible
for inflating the radii of DEB components, only ad hoc proce-
dures for treating the effects of magnetic fields have been in-
troduced (Mullan & MacDonald 2001; Chabrier et al. 2007).
The method examined byChabrier et al.(2007) included ar-
tificially decreasing the convective mixing-length parameter,
so as to mimic the effect of a global magnetic field within
the star, as well as artificially reducing the star’s bolomet-
ric flux in an effort to reproduce the effects of photospheric
spots. A second method, proposed byMullan & MacDonald
(2001), altered the Schwarzschild criterion by perturbing the
adiabatic gradient in a manner consistent with the work of
Gough & Tayler(1966).

Investigations by both groups appear to be at odds
with one another.Chabrier et al.(2007) and Morales et al.
(2010) claim that starspots appear to be the dominate
mechanism inflating stellar radii, and that modifications
to convection require unrealistic magnetic field strengths
(i.e., reductions in the mixing length in their formula-
tion). On the other hand,Mullan & MacDonald(2001) and
MacDonald & Mullan(2012) conclude the opposite that re-
duction in convective efficiency is ultimately the dominant
mechanism. Regardless of which is really the dominant mech-
anism, both approaches are inherently ad hoc, yet both are
capable of reproducing the observed inflated stellar radii.

In this paper, we introduce a self-consistent treatment of
a globally pervasive magnetic field embedded in the frame-
work of the Dartmouth stellar evolution code (Dotter et al.
2007, 2008). Our approach follows the outline provided by
Lydon & Sofia(1995), though we deviate from their method
in a number of ways that are described below. All of the
stellar structure equations, including those in the equation of
state, are self-consistently modified, as opposed to arbitrarily
altering a single quantity. In this way, modifications to the
efficiency of thermal convection are accounted for in a more
complete fashion, owing to the full thermodynamic treatment
of the magnetic field. Overall, the approach used to model
magnetic effects can be considered analogous to the parame-
terized mixing-length treatment of convection.2 The viability
of the models is tested against results from a recent study that
characterized the DEB EF Aquarii (Vos et al. 2012).

EF Aquarii (HD 217512; henceforth EF Aqr) is a solar-type
DEB found to contain two components displaying drastically

2 In so far as reducing an inherently nonlinear, three-dimensional process
into terms suitable for a one-dimensional model.

Table 1
Fundamental Stellar Parameters for EF Aqr

Parameter EF Aqr A EF Aqr B

M (M⊙) 1.244±0.008 0.946±0.006
R(R⊙) 1.338±0.012 0.956±0.012
Teff (K) 6150±65 5185±110
[Fe/H] 0.00±0.10

inflated radii (Vos et al. 2012). Fundamental parameters of
the system are quoted in Table1. What is most striking, is the
similarity of the secondary to the Sun and the entire system to
α Centauri A and B, in terms of the stellar masses and compo-
sition. Although the secondary appears similar to bothα Cen
B and the Sun, its radius appears to be about 10% larger than
one would expect based on stellar evolutionary calculations.
The effective temperature of the primary further reveals that
both components suffer from substantial radius inflation.

In an effort to reconcile the observations with predictions
from theoretical models,Vos et al.(2012) reduced the value
of the convective mixing-length. They foundαMLT of 1.30
and 1.05 were required for the primary and secondary, respec-
tively, compared to their solar-calibrated value of 1.68. They
concluded that fine-tuning the models allows for an accurate
description of the observed properties.

Reduction of the required convective mixing length may
be physically motivated in two ways: (1) naturally ineffi-
cient convection and (2) magnetically suppressed convection.
While we must be careful to not read too much into the re-
ality of mixing-length theory, in stellar evolution modelsthe
mixing length is an intrinsic “property” of convection. Thus,
reducing the mixing length is akin to saying convection is not
very efficient at transporting excess energy.

Bonaca et al. (2012) calibrated the convective mixing
length for solar-like stars using asteroseismic results provided
by theKepler Space Telescope. They found that the value of
αMLT in stellar models is tied to stellar properties (i.e., logg,
logTeff, and [M/H]). Applying the Bonaca et al.(2012) em-
pirical calibration to the stars in EF Aqr, we find that the
primary and secondary component requireαMLT = 1.68 and
1.44, respectively. Again, compared with their solar cali-
brated value ofαMLT = 1.68. The asteroseismically adjusted
mixing-lengths are significantly larger than the fine-tunedval-
ues determined byVos et al.(2012). Therefore, it appears that
naturally inefficient convection is insufficient to explainthe
inflated radii of EF Aqr. We are left with the option that mag-
netic fields may possibly be to blame.

In what is to follow, we describe a self-consistent approach
to modeling the effects of a globally pervasive magnetic field
with application to the EF Aqr system. Details of the stan-
dard Dartmouth models are presented in Section2 followed
by a description of the magnetic perturbations introduced to
the code in Sections3 and4. Section5 demonstrates the abil-
ity of the invoked perturbations to reconcile the models with
the observations. We conclude with a further discussion of the
results and their implications in Section6.

2. MODELS

The framework throughout which magnetic effects are
invoked is provided by the Dartmouth Stellar Evolution
Program (DSEP;Dotter et al. 2008),3 a descendant of

3 Available at:http://stellar.dartmouth.edu/models/

http://stellar.dartmouth.edu/models/
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the Yale Rotating Evolution Code (Guenther et al. 1992).
Standard stellar evolution henceforth refers to the ba-
sic physics without any magnetic perturbation. The
standard physics incorporated in DSEP has been de-
scribed previously (Chaboyer & Kim 1995; Chaboyer et al.
2001; Bjork & Chaboyer 2006; Dotter et al. 2007, 2008;
Feiden et al. 2011), although we will briefly review the ele-
ments that are pertinent for the current study.

Above 0.80M⊙, DSEP invokes an ideal gas equation of
state (EOS) supplemented by a Debye-Hückel correction in
order to account for ion-charge shielding (Chaboyer & Kim
1995). This EOS is computed analytically, in a self-consistent
manner, within the code and does not rely on the interpo-
lation within EOS tables. Opacities are drawn from two
sources, the OPAL opacities for the high temperature regime
(Iglesias & Rogers 1996) complimented by the Ferguson low-
temperature opacities (Ferguson et al. 2005). Surface bound-
ary conditions are defined using thePHOENIX AMES-COND
model atmospheres (Hauschildt et al. 1999a,b), attached to
the model interior whereT = Teff.

Atomic diffusion and the gravitational settling of helium
and heavy elements are implemented using the prescription
of Thoul et al.(1994). Additional diffusion effects associated
with turbulent mixing (Richard et al. 2005) are also included.
Details of the latter are presented inFeiden et al.(2011). Fi-
nally, convective core overshoot is treated following the meth-
ods outlined byDemarque et al.(2004).

Required before any analysis pertaining to stellar evolution
models is calibrating the model properties to the Sun. Deter-
mination of the initial solar helium and heavy element mass
fractions along with a compatible mixing-length parameter
(Yinit, Zinit , andαMLT , respectively) was performed by cali-
brating a 1M⊙ model to the Sun. Our solar model was re-
quired to reproduce the solar radius, solar luminosity, radius
at the base of the convection zone, and the solar photospheric
(Z/X) at the solar age (4.57 Gyr;Bahcall et al. 2005). The
final set of parameters necessary to satisfy the above crite-
ria for theGrevesse & Sauval(1998) solar composition was
Yinit = 0.27491,Zinit = 0.01884, andαMLT = 1.938.

3. MAGNETIC PERTURBATION

3.1. Magnetic Field Characterization

Investigating the effects of a global magnetic field on the
interior structure of a star over long time baselines, requires
formulating a purely three-dimensional (3D) phenomenon in
terms suitable for a one-dimensional (1D) numerical model.
Unfortunately, full 3D magnetohydrodynamic (MHD) models
are not yet capable of modeling stellar magnetic fields over
the long time baselines required for stellar evolutionary cal-
culations. This is in part due to the rapid4 diffusion of the
magnetic field and the immense computational time required.
Therefore, in order to probe the effects of a magnetic field, we
seek to avoid directly solving the induction equation

∂B
∂t

= ∇× (u×B)+η∇2B. (1)

While not actively seeking a solution to the full suite of 3D
MHD equations, it is possible to use the theoretical frame-
work of MHD to provide a reasonably accurate 1D descrip-
tion of a magnetic field and its associated properties. Ulti-
mately, we are able to describe a magnetic field in terms of

4 Relative to a typical stellar lifetime.

the MHD equations and then project out the radial compo-
nent, the component necessary for stellar evolutionary model
computations.

The spatial and temporal evolution of a given magnetic field
are governed, quite naturally, by Maxwell’s equations,

∇ ·E=0 (2)

∇×E=−
1
c

∂B
∂t

(3)

∇ ·B=0 (4)

∇×B=
4π
c

J (5)

where within the stellar plasma, we assume any regions of
excess charge inducing an electric potential will rapidly neu-
tralize owing to the mobility of other charges (Debye shield-
ing). Thus, we can safely assume that the plasma is electri-
cally neutral,ρe = 0. For simplicity, we here made another
assumption, that temporal variations of the large-scale field
are small, suggesting that the conduction current dominates
the displacement current.

Now, let us consider the interactions between the elec-
tric and magnetic fields within a dense, ionized fluid mov-
ing with arbitrary velocity,u. For slow temporal evolution,
non-relativistic dynamics may be described by a single con-
ducting fluid that obeys the classical equations of hydrody-
namics coupled with the equations of electromagnetism; the
MHD equations (Jackson 1998). Considering a perfectly con-
ducting, non-viscous, non-rotating, compressible fluid inthe
presence of a gravitational field, the MHD equations govern-
ing the system are Ohm’s law for a moving fluid,

J = σ
(

E+
u×B

c

)

, (6)

the equation of mass continuity,

∂ρm

∂t
+∇ · (ρmu) = 0, (7)

whereρm is the mass density, and the fluid equation of motion,

ρm
du
dt

=
J×B

c
−∇ ·

←→
P +ρmg (8)

with g being the gravitational field vector and
←→
P representing

the gas pressure tensor. The electromagnetic term in the fluid
equation of motion is associated with the assumption that a
magnetic field permeates the plasma. However, we have ne-
glected forces associated with any electric fields, for reasons
detailed above.

Since, a priori, we have no knowledge of the current den-
sity within a given fluid, we replace the current density within
Equation (8) using Equation (5). The equation of motion may
now be written as

ρm
du
dt

=
1
4π

(∇×B)×B−∇ ·
←→
P +ρmg. (9)

With the aid of a vector operation identity and knowing that
the magnetic field is divergenceless, this may again be rewrit-
ten as

ρm
du
dt

=
1
4π

(B ·∇)B−
1
8π

∇B2−∇ ·
←→
P +ρmg. (10)

Immediately, we recognize that the electromagnetic contribu-
tions on the right-hand side are the familiar magnetic tension
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and pressure terms, respectively. However, the final form of
the equation of motion requires one further step. The first
two terms on the right-hand side may be expressed as the di-
vergence of a magnetic stress tensor (Gurnett & Bhattacharjee
2005), let us call it

←→
T , such that

←→
T =−

BB
4π

+
←→
I

B2

8π
(11)

with
←→
I representing the identity tensor. This definition then

implies,

ρm
du
dt

=−∇ ·
(←→

T +
←→
P
)

+ρmg. (12)

The magnetic stress tensor introduced above can be thought
of an anisotropic pressure tensor, where the pressures it de-
scribes are intrinsic properties of the magnetic field.

Stars, however, are considered to be in hydrostatic equilib-
rium. This implies the absence of bulk fluid motion, forcing
the left-hand side of the equation of motion to vanish. There-
fore,

∇ ·
(←→

T +
←→
P
)

= ρmg, (13)

which is a statement of magnetohydrostatic equilibrium.

3.2. Stellar Structure Perturbations

At the most fundamental level, one-dimensional stellar evo-
lution codes simultaneously solve a set of four coupled, first-
order differential equations.5 They are the equation of mass
conservation, hydrostatic equilibrium, energy transport, and
energy conservation. Qualitatively, we can easily predicthow
these equations will be altered by the presence of a magnetic
field which may then be translated into a quantitative descrip-
tion.

The equation of mass conservation should be unaltered by
any magnetic perturbation. Of course, this is assuming that
mass removed by stellar winds is negligible and that transient
events that may remove mass (i.e., flares, coronal mass ejec-
tions) are neglected. The stated conditions hold for our ap-
proach. Thus,

dr
dm

=
1

4πr2ρ
(14)

where we have dropped the subscriptm on the density and
assume all references to density are specifically to the mass
density, unless otherwise noted.

Hydrostatic equilibrium, as we saw earlier in Equation (13),
is modified through the inclusion of the magnetic pressure and
tension. Projecting out the radial component of the magnetic
pressures, we are able to adapt the three-dimensional concept
for one-dimensional models. Therefore, we have

dP
dm

=−
Gm
4πr4 +

1
4πr2ρ

[

(B ·∇)B
4π

−∇
(

B2

8π

)]

· r̂ . (15)

The precise handling of the vector magnetic field within the
code will be discussed later.

The final form of the energy transport equation is the same
as if there were no perturbation. Namely,

dT
dm

=
T
P

∇temp
dP
dm

(16)

5 There are additional equations often included to account for atomic dif-
fusion. While included in DSEP, we do not seek perturbationsto these equa-
tions at the present time. SeeMathis & Zahn(2005) for a rigorous treatment
of mixing associated with magnetic fields.

where ∇temp is the local temperature gradient. Magnetic
perturbations to the stellar structure equations will self-
consistently alter the temperature gradient through various
thermodynamic considerations. Of greatest importance will
be the affects on the treatment of convection. The full treat-
ment will be discussed in the next subsection.

Finally, there are changes to the parameters present in the
canonical equation of energy conservation in stellar evolution.
Modifications to these parameters arise from the treatment of
the specific thermodynamic equations (discussed in the next
subsection) and additional terms that are electromagneticin
origin. The final form of the energy conservation equation is

dL
dm

= ε−
dU
dt

+
P
ρ2

dρ
dt

+
Qohm

ρ
+

FPoynt

ρ
. (17)

Aside from the first three standard terms on the right-hand
side, there are two additional electromagnetic terms. First,
there is a Poynting flux associated with the field,

FPoynt=
c

4π
E×B, (18)

although as discussed above, we assume theE-field is zero
everywhere. Next, energy is also associated with the Ohmic
dissipation of electric currents brought about by the resistive
nature of the plasma.

Qohm ∝ I2R, (19)

whereI is the electric current andR is the resistance of the
medium. Here, electrical currents are converted to heat that
then is transmitted to the surrounding plasma. Since we have
assumed an infinitely conducting plasma, this energy term
goes immediately to zero.

3.3. Thermodynamic Considerations

The effects of a global magnetic field are introduced into
the thermodynamic framework supplied by DSEP follow-
ing the approach outlined byLydon & Sofia(1995, hereafter
LS95). Providing a detailed, step-by-step guide of the mag-
netic perturbation to the various thermodynamic quantities
would prove tedious. Therefore, we refer the reader to LS95
for a full derivation of each equation presented below. Our
aim in this subsection is to adequately summarize the perti-
nent aspects of LS95 and highlight where we diverge from
their original approach.

At the core of the LS95 method is the specification of a new
thermodynamic state variable,χ, such that

χ = χ(r, ρ) =
Uχ

ρ
=

B(r)2

8πρ
. (20)

The state variableχ is the magnetic energy per unit mass and
B(r) is the magnetic field strength at radiusr. Unlike LS95,
our definition ofχ depends on the radial distribution of the
magnetic field strength and also on the density of the stel-
lar plasma. Originally, LS95 favored a mass-depth-dependent
function, χ(Mr). However, we moved away from this pre-
scription when we realized several thermodynamic derivatives
became divergent. Once the magnetic field strength is speci-
fied throughout the star, it is straightforward to calculateχ at
each point within the model.

The energy associated with the magnetic field arises due to
forces exerted by the magnetic field on the plasma. These
forces are represented by the anisotropic pressure tensor
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present in Equation (12). As a first approximation, we con-
vert the pressure tensor to a scalar pressure by taking the trace
of the pressure tensor to yield the mean magnetic pressure,

〈Pmag〉 ∼
1
3

Tr

(

−
BB
4π

+
←→
I

B2

8π

)

. (21)

Since we are not solving the full set of MHD equations, we
look, instead, to set approximate upper and lower limits on the
scalar pressure. Assuming a Cartesian coordinate system, if
we imagine the magnetic field is parallel to thez-axis, or for
a star, the rotational axis, then we may expand the pressure
tensor to read

←→
T =





B2/8π 0 0
0 B2/8π 0
0 0 −B2/4π+B2/8π



 . (22)

Note that there is an isotropic magnetic pressure associated
with each diagonal element along with the additional mag-
netic tension term in the final element. Since tension is di-
rected along the field line, the tension exists in thez-direction
only, in this instance. Taking the trace, we find

〈Pmag〉=
1
3

(

B2

8π

)

=
1
3

χρ. (23)

The above equation is satisfied for a magnetic field where
a strong tension component is present. However, if we as-
sume that there is no tension at all, then, following the same
procedure,

〈Pmag〉=
1
3

(

3B2

8π

)

= χρ. (24)

We can now limit the strength of the scalar magnetic pressure
within the one-dimensional framework. Specifically,

1
3

χρ≤ 〈Pmag〉 ≤ χρ. (25)

Defining a “geometry parameter,” akin to LS95, allows us to
emulate the effects of having a strongly curved field or a field
with no curvature, and varying degrees between the two ex-
tremes. This geometry parameter is defined such that we re-
cover the average magnetic pressure for each case above,

〈Pmag〉= (γ−1)χρ≡ Pχ (26)

where

γ =
{

2 tension-free
4/3 maximum tension. (27)

In both cases, the appropriate expression for the scalar mag-
netic pressure is returned. With the magnetic energy density
and pressure formulated as scalars, we have successfully con-
verted the inherently three-dimensional magnetic field into a
one-dimensional magnetic perturbation. In the process, we
have also reproduced the scalar parameters originally pre-
sented by LS95.

3.3.1. Equation of State

The derivations that follow hereafter in Sections3.3.1and
3.3.2are provided as a review of the LS95 method to enable
transparency and enhance the clarity of discussions concern-
ing the application of our models. Original, complete deriva-
tions are to be found in LS95. We do, however, deviate from

their paper in Equation (65), where it is stated explicitly be-
low.

We have just seen that magnetic fields exert forces on the
plasma and, thus, carry an associated pressure, tension, and
energy. The introduction of these terms into the equations of
stellar structure then necessitates the inclusion of thesepa-
rameters in the EOS of the system. Again, we will mention
only the most important modifications, deferring to LS95 for
a rigorous treatment. Beginning with the first law of thermo-
dynamics,

dQ = T dS = dU +PdV (28)

we recognize that each term contains, now, both the standard
gas and radiation terms as well as a new magnetic contribu-
tion,

dQ = T (dS0+ dSχ) = (dU0+ dUχ)+P0dV. (29)

In the above equation, the magnetic perturbation rightly does
not contribute any work. However, in order to write the equa-
tion as a function of the total pressure, we may subtract off
the magnetic contribution,

TdS = dU +PdV − (γ−1)
χ
V

dV (30)

where we take the volume to be the specific volume,V = ρ−1.
Hereafter, it is also assumed that any unsubscripted quantity
refers to the total quantity while gas and radiation are lumped
under the subscript 0 (zero) convention and magnetic vari-
ables carry a subscriptχ.

Equation (30) is the new “non-standard” first law of ther-
modynamics and suggests that

V or ρ = f (P, T, χ)

and
U or S = f (ρ, T, χ).

Following the derivation by LS95, explicitly writing out the
other state variables illustrates the effects of adding themag-
netic perturbation. Ignoring constants for clarity and ease,

P=ρT +
1
3

T 4+χρ(γ−1) (31)

ρ=
[

P−T4/3
]

/ [T +(γ−1)χ] (32)

U =
3
2

T +
T 4

ρ
+χ (33)

which are all subject to the EOS,

dρ
ρ

= α
dP
P
− δ

dT
T
−ν

dχ
χ
. (34)

The coefficients in the EOS above are defined as follows,

α=

(

∂ lnρ
∂ lnP

)

T,χ
(35)

δ=−
(

∂ lnρ
∂ lnT

)

P,χ
(36)

ν=−
(

∂ lnρ
∂ lnχ

)

P,T
(37)

and will be referred to, as such, throughout the rest of the
paper. Note, thatα carries no subscript and should not be
confused with the convective mixing-length parameter,αMLT .
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An immediate consequence of altering the thermodynamic
variables is the effect on the specific heats,

cP =

(

dQ
dT

)

P,χ
=

(

dU
dT

)

P,χ
+[P− (γ−1)χρ]

(

dV
dT

)

P,χ
(38)

cV =

(

dQ
dT

)

V,χ
=

(

dU
dT

)

V,χ
(39)

which are related to one another via the relation,

cP− cV =
Pδ2

ρTα
. (40)

The difference in specific heats is written just as it would
be without any magnetic perturbation, however, each term is
self-consistently modified by the presence of a magnetic per-
turbation.

The change in heat as a result of the magnetic perturbation
follows and is found to be

dQ = cPdT −
δ
ρ

dP+

(

Pδν
ραχ

+1

)

dχ, (41)

although, the addition of the purely magnetic term,dχ, as a
result of the perturbation should not be included. The reason-
ing for this is simple. If we assume that magnetic phenomena
are generated through the dynamo action, then we inference
that rotational energy is the source for the energy converted
to the pure magnetic term. Since our models do not account
for rotation, we discard the final term in the above equation.
Thus, the change in heat to be considered in the stellar lumi-
nosity equation is

dQ = cPdT −
δ
ρ

dP+
Pδν
ραχ

dχ. (42)

LS95 were quick to point out, that at the instant of any mag-
netic perturbation, the change in heat due to magnetic effects
should be exactly zero.

Finally, from the observed change in heat comes the defini-
tion of the adiabatic gradient. Adiabaticity requires constant
entropy, and therefore no heat exchange, meaning

∇ad =

(

d lnT
d lnP

)

S,χ
=

Pδ
ρTcP

(43)

as it is in the non-magnetic case. Again, only in appearance;
the actual variables are altered by the introduction of a mag-
netic perturbation.

3.3.2. Mixing-length Theory

Convection is determined to occur in regions where a given
fluid parcel is unstable to a small displacement in the radial
direction. The primary method of determining convective sta-
bility is to analyze the density of a generalized fluid parcel.
Parcels that are less dense than their surroundings will travel
radially outward until they reach a height within the star at
which the surrounding fluid has the same density as the par-
cel.

Upon reaching this point, the fluid parcel is assumed to fully
mix with its surroundings becoming indistinguishable from
the rest of the fluid. Conversely, if a fluid element is more
dense than surrounding fluid, it will sink down to a greater
depth in the star, following the same trend as a rising convec-
tive element. In either case, gravity is the restoring force. One

assumption is that the fluid parcel is considered to always be
in pressure equilibrium with its surroundings.

The distance over which a fluid parcel travels before mix-
ing is the well-known “mixing-length.” Mixing-length theory
(MLT) has been well established as a local means of prescrib-
ing convection for a one-dimensional stellar evolution code
(Vitense 1953; Böhm-Vitense 1958). At locations where vari-
ous differences in prescriptions of MLT occur, we will specify
our assumptions.

Stability of a fluid parcel is determined by comparing the
density of the element to that of the surroundings

Dρ =

[(

dρ
dr

)

e
−

(

dρ
dr

)

s

]

∆r (44)

wheree and s denote quantities of the fluid element under
consideration and the surroundings, respectively. To ensure
stability, we requireDρ > 0, meaning, the element is stable to
small radial displacements,

(

dρ
dr

)

e
−

(

dρ
dr

)

s
> 0. (45)

As the fluid parcel is displaced radially, LS95 reminds us that
we must consider howχ of the parcel reacts. If the initialχ of
the parcel does not change as the element is displaced,

(

d lnχ
dr

)

e
= 0.

Conversely, ifχ of the element is always equal to that of the
surrounding material, there must be a flux ofχ as the element
is displaced,

(

d lnχ
dr

)

e
=

(

d lnχ
dr

)

s
.

It is therefore advantageous to relate the spatial gradientof
magnetic energy density of the parcel to that of the surround-
ings by introducing a free parameter,f , such that

(

d lnχ
dr

)

e
= f

(

d lnχ
dr

)

s
(46)

where f varies between 0 and 1. Later, we will attempt to
eliminate this free variable and set it to a physically realistic
value.

Expanding the density differentials introduced in Equa-
tion (45) and multiplying through by the pressure scale
height6 casts the stability criterion according to known dif-
ferentials,

δ∇e− (1− f )ν∇χ− δ∇temp> 0. (47)

where we made use of a series gradient definitions,

∇temp≡

(

d lnT
d lnP

)

s
(48)

∇e≡

(

d lnT
d lnP

)

e
(49)

∇χ≡

(

d lnχ
d lnP

)

s
=

(

d lnχ
dr

)

s

(

dr
d lnP

)

s
. (50)

6 Here, we reveal that we are basing our MLT formulation on the pres-
sure scale height,HP = −(dr/d lnP), as opposed to the temperature scale
height since we assume pressure equilibrium between the fluid parcel and its
surroundings.
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Here, we have defined the temperature gradient of the sur-
rounding plasma, temperature gradient fluid element in ques-
tion, and the magnetic energy density gradient, respectively.

The magnetic energy density gradient turns out to affect the
final form of the temperature gradient of the fluid parcel. In
particular, the relation between the gradient of the parceland
that of the surrounding fluid, given by Equation (46). If f = 0,
then we find that complete adiabaticity holds, meaning∇e→
∇ad. However, for the case thatf 6= 0, any heat transferred
away from the parcel will be in the form of magnetic energy
(dQ = dχ). Thus, from Equation (42),

0= cP dTe−
δ
ρ

dPe +
Pδν
ραχ

dχe (51)

which may be rearranged to read

∇e = ∇ad− f
ν
α

∇ad∇χ. (52)

Substituting this expression for the parcel’s temperature
gradient back into Equation (47), we derive the condition that
must be met if a fluid parcel is to be stable against convection,

∇ad− f
ν
α

∇ad∇χ− (1− f )
ν
δ

∇χ > ∇temp. (53)

With a modified stability criterion in hand, LS95 the proceed
to derive a set of five equations that allow for a solution to
the temperature gradient,∇temp. The equations are developed
through a detailed consideration of the various energy fluxes
through the system in their Sections 5.1 – 5.3. The final five
equations comprising their magnetic mixing-length descrip-
tion of convection are

Ftot=
4acG

3
T 4Mr

κPr2 ∇rad (54)

Ftot=
4acG

3
T 4Mr

κPr2 ∇temp+Fconv (55)

Fconv=ρvconv

[

cPDT +
Pδν
ραχ

Dχ
]

(56)

v2
conv=

gℓ2
mδ

8HP

[

(

∇temp−∇e
)

+
ν
δ
(1− f )∇χ

]

(57)

2acT 3

ρvconvcP

[

ω
1+ ÿω2

]

(∇temp−∇e)

= (∇e−∇ad)+ f
ν
α

∇ad∇χ (58)

where we must now take a moment to dissect the various
pieces.

The first two equations above describe the total flux if only
radiation is carrying energy and in the case that convection
is also present, respectively. Within those two equations,a,
c, and G are, respectively, the radiation constant, speed of
light in a vacuum, and the gravitational constant.Mr is the
mass contained within a spherical volume characterized by
the radius,r, andκ is the radiative opacity. Lastly,∇rad is the
radiative temperature gradient.

Equation (56) is the energy flux transported by convection.
The quantities,DT and Dχ are defined the same asDρ in
Equation (45). Another variable, the convective velocityvconv
is also introduced and characterizes the velocity of the fluid
within a convection cell.

The convective velocity is then defined in Equation (57)
and contains a single parameter not previously mentioned,ℓm.
This parameter is the convective mixing-length,ℓm, which is
further defined as some multiple of the pressure scale height
(i.e., ℓm = αMLT HP). Note that the mixing-length introduces
the canonical convective mixing-length parameter,αMLT , into
the discussion.

Last of the five equations of MLT describes how the con-
vective gradient is connected to the adiabatic gradient. Here,
ω = κρℓm andÿ is set by the geometry of the convecting bub-
ble. The shape parameter, ¨y is partially what separates the var-
ious formulations of MLT. Consistent with the standard DSEP
treatment of convection, and LS95, we set ¨y = 1/3.

Combining Equations (54)–(58) yields a solution for the
convective velocity, which effectively defines the temperature
gradient. The entire solution, as with the previous derivations,
may be found in its full glory in LS95. For our purposes, we
cite yet another set of new variables required to simplify the
solution,

Q = δ (59)

γ0 =
cPρ

2acT3

(

1+ω2/3
ω

)

(60)

C =
gℓ2

mQ
8HP

(61)

V−1 = γ0C1/2·
(

∇rad−∇ad+ f
ν
α

∇ad∇χ +(1− f )
ν
δ

∇χ

)1/2
(62)

A =
9
8

ω2

(3+ω2)
(63)

and, lastly,
y = vconvV γ0. (64)

Resulting from the combination of the five magnetic MLT
equations and the substitution of the variables just defined
produces an equation that is quartic iny,

2A
V

y4+ y3+

[

2Aγ2
0C

(

∇ad

α
−

1
Q

)

(1− f )ν∇χ +1

]

Vy2−

y−
Cγ2

0V 3ν
Q

(1− f )∇χ = 0. (65)

We remark that in the equation above, we deviate from LS95
by the presence of a 1/Q in the quadratic term. This difference
appears to be the result of the authors accidentally dropping a
term in the original derivation. However, as we shall see, this
factor will become unimportant.

Finding a solution fory from Equation (65) can easily be
obtained numerically. Making an educated guess as to the
solution fory we may use a series of Newton–Raphson cor-
rections to converge to a proper solution. A convergence tol-
erance of 10−10 is imposed on the correction term to reduce
propagation of large numerical errors. Modifying the original
“guess” supplied by LS95 to include the dropped term men-
tioned above, a good trial solution is

y =

[

1+2ACγ2
0ν

(

∇ad

α
−

1
Q

)

(1− f )∇χ

]−1

. (66)
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One may notice that in the above trial solution (and most other
MLT equations), the precise value of the free parameterf has
the ability to drastically simplify the expression.

3.4. The Parameter f and the Frozen Flux Condition

In Section3.1 we specified that the plasma under consid-
eration was perfectly conducting and, thus, had zero resis-
tivity. One consequence of assuming an ideal MHD plasma
is that magnetic field lines become physical objects that are
transported by the plasma, the so-called frozen flux condition
(FFC;Alfvén 1942). The magnetic flux is

Φ(t) =
∫

S(t)
B(r , t) ·dÂ. (67)

For an ideal plasma, the evolution ofΦ in time is dependent
upon not only the time rate of change of the magnetic field,
B(r, t), but also on any distortion occurring to the bound-
ing surface,S(t), as the plasma moves. The net effect is that
the time rate of change of the magnetic flux is equal to zero.
Therefore, we must have

∂B
∂t

= 0, (68)

which may be rewritten using Equation (1), the induction
equation, withη = 0. This results in the well-known FFC
condition,

∇× (u×B) = 0. (69)

The FFC enforces the restriction that, for a spherically sym-
metric bubble of plasma undergoing isotropic expansion or
contraction (Kulsrud 2004),

B

ρ2/3
= constant. (70)

Applying this constraint to the magnetic energy gradient def-
inition of a convecting fluid element (Equation (46)), we are
able to physically motivate the definition of the parameterf
which governs the flux of energy between the fluid element
and the surrounding material.

Imagine a region in a star where a small bubble begins to
grow convectively unstable. Initially, the bubble has the same
properties as the surrounding fluid. It is only because of the
change in density that other properties begin changing as well.
The FFC allows us to write the magnetic energy contained
within a fluid parcel as a function of the magnetic energy of
the surrounding material. Since a convecting fluid parcel has
a slight under- or overdensity compared to its surroundings,
we perturb the element’s density

ρe = ρs + ξ (71)

where it is understood thatξ≪ ρs. We also drop the subscript
s hereafter. Assuming, for simplicity, that the bubble expands
isotropically, the magnetic field strength within a convectively
unstable bubble is

Be =
B

ρ2/3
(ρ+ ξ)2/3 = B

(

1+
ξ
ρ

)2/3

(72)

meaning the magnetic energy per mass may be written as

χe =
B2

e

8π(ρ+ ξ)
=

B2

8πρ

(

1+
ξ
ρ

)1/3

. (73)

We now have a direct relation between the magnetic energy
density of the convecting fluid element and the surrounding
material,

χe = χs

(

1+
ξ
ρ

)1/3

. (74)

Taking the radial, logarithmic derivative,
(

d lnχ
dr

)

e
=

(

d lnχ
dr

)

s
+

1
3

(

ξ
ρ+ ξ

)[

d lnξ
dr
−

d lnρ
dr

]

.

(75)
The first of the bracketed terms goes to zero, as the density
perturbation is independent of radial location. Using the defi-
nition of χs (Equation (20)) to expand the derivative, and after
rearranging the resulting terms, the equation becomes
(

d lnχ
dr

)

e
=

d
dr

ln

(

B2

8π

)

−

(

d lnρ
dr

)[

1+
1
3

(

ξ
ρ+ ξ

)]

.

(76)
By definition, we know thatξ/ρ≪ 1, meaning the perturba-
tion term in the square brackets is negligible. As such,

(

d lnχ
dr

)

e
≈

(

d lnχ
dr

)

s
(77)

allowing us to conclude that the FFC implies thatf ≈ 1.

3.5. Magnetic Field Strength Distribution

The strength of the perturbations described in the preceding
sections are determined by the magnitude and spatial gradient
of χ. Mentioned in Section3.3, was that we deviate from the
prescription ofχ proposed by LS95. Instead of defining

χ = χmaxexp

[

−
1
2

(

MD−MDc

σ

)2
]

, (78)

where

MD = log10

[

1−

(

Mr

M∗

)]

, (79)

we opt to directly prescribe the radial magnetic field profile.
Approaching the problem in this manner, however, introduces
the difficulty of selecting a particular radial profile, and with-
out any real confidence of the radial profile inside stars, we
are left to our own devices.

One of the simplest profiles to select is that of a dipole con-
figuration, where the field strength drops off asr−3 from the
magnetic field source location. This is illustrated in Figure 1.
The radial profile may then be prescribed as

B(R) = B(Rtach) ·

{

(Rtach/R)3 R > Rtach

(R/Rtach)
3 R < Rtach

(80)

with the peak magnetic field strength defined to occur at the
radiusRtach. The radial location described byRtach is the lo-
cation of the stellar tachocline, an interface between the con-
vective envelope and radiative core. This interface region
is thought to be characterized as a strong shear layer where
the differentially rotating convection zone meets the radia-
tive core rotating as a solid body. Theory suggests that the
tachocline is the source location for the standard mean-field
stellar dynamo (i.e., theα–ω dynamo;Parker 1975).

Since DSEP monitors the shell location of the boundary
to the convection zone, the tachocline appeared to be a rea-
sonable location, both theoretically and numerically, to base
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Figure 1. Magnetic field strength profile for a 1.0M⊙ star with a 5.0 kG
photospheric magnetic field strength (maroon, solid). The green dash-dotted
line indicates the location of the stellar tachocline, the interface between the
radiative and convective regions. The plot is meant only to illustrate the field
strength profile. A small gap in the field strength profile is barely perceptible
near the surface of the star. This artifact is due to the separation of the stellar
interior and envelope integration regimes in the code.

the scaling of the magnetic field strength. However, defining
the magnetic field strength at the tachocline (B(Rtach)) is re-
quired. In an effort to allow for direct comparisons between
field strengths input into the code and observed magnetic field
strengths, the field strength at the tachocline is anchored to the
photospheric (surface) magnetic field strength,

B(Rtach) = Bsurf

(

R∗
Rtach

)3

. (81)

whereBsurf = B(R∗) is introduced as a new free parameter.
The advantage ofBsurf as a free parameter is that it has poten-
tial to be constrained observationally.

Fully convective stars do not possess a tachocline. How-
ever, a dynamo mechanism still has the potential to
drive strong magnetic fields through anα2 mechanism
(Chabrier & Küker 2006). Full three-dimensional MHD mod-
eling suggests that, in this case, the magnetic field strength
peaks at about 0.15R∗ (Browning 2008). Unfortunately,
the adopted micro-physics were solar-like and may not be
entirely suitable for fully convective M-dwarfs. Regardless
of these shortcomings, Browning’s investigation providesthe
only estimate, to date, for the location of the peak magnetic
field strength in fully convective stars. As such, we adopt
Rtach= 0.15R∗ as the dynamo source location in our models
of fully convective stars.

3.6. Numerical Implementation

Although we have laid out the mathematical construction of
the magnetic perturbation, we have yet to illuminate precisely
how the perturbation is treated numerically. When a magnetic
model is first executed, the user provides a surface magnetic
field strength, the geometry parameterγ, and the age at which
the magnetic perturbation will occur. The model proceeds to
evolve the same as a standard model until the initial perturba-
tion age is reached.

Once the perturbation age is reached, the magnetic field
strength profile is prescribed based on the assumed photo-
spheric field strength and the location of the tachocline, asin
Figure1. The magnetic energy and magnetic pressure are then

computed for each of the model’s mass shells. Here, the total
pressure associated with each mass shell is also perturbed.

Following the introduction of the perturbation, the code
must recompute the structure of the stellar envelope, which
is separate from the stellar interior integration. The envelope
comprises the outer 2%–3%, by radius, of the stellar model.
Surface boundary conditions are determined prior to the enve-
lope integration by interpolating within thePHOENIX model
atmosphere tables using logg andTeff. This interpolation re-
turnsPgasat the surface of the star, and defines the start of the
inward integration. The magnetic perturbation is then explic-
itly included in the calculation of the analytic EOS.

This leads into the convection routines, where the non-
standard stability criterion in Equation (53) is evaluated and
judged. Either the equations of magnetic MLT are solved,
or the radiative gradient is selected. The envelope integra-
tion scheme proceeds until it reaches a pressure commensu-
rate with the pressure for the interior regime.

From the newly calculated envelope, the interior integra-
tion begins using a Henyey integration scheme (Henyey et al.
1964) with the magnetic perturbation implemented. The EOS
and convection routines are evaluated as in the envelope.
Once a final solution is converged upon, the code iterates in
time and the process is repeated. For each temporal iteration,
the magnetic field profile is adjusted to adapt to changes in the
location of the tachocline and changes in the number of mass
shells.

4. INITIAL TESTING

In Section3, we outlined the formulation and implemen-
tation of a magnetic perturbation within the framework of
DSEP. With the perturbation implemented, it was crucial to
perform a series of numerical tests and common-sense checks
to validate that the code was operating properly.

The four key numerical tests were to ensure that:

1. The relative change in radius between magnetic mod-
els of monotonically increasing photospheric magnetic
field strength must also be monotonically increasing
with respect to a non-magnetic model.

2. All model adjustments after the initial perturbation
must be continuous and smooth.

3. The final perturbed model properties must be indepen-
dent of the evolutionary stage at which the perturbation
is made.

4. The resulting perturbed model must be consistent, re-
gardless of the number of time steps taken after the per-
turbation.

All of these tests were performed to confirm that the code
was producing consistent results and that it was doing so in a
numerically stable manner (i.e., no wild fluctuations).

Figure2 demonstrates that all model adjustments to a mag-
netic perturbation satisfy each of the four criteria we required
for numerical validation. Panel (a) demonstrates that the ra-
dius monotonically increases as the surface field strength ap-
plied monotonically increases. Changes are observed to be
smooth, as seen in panel (b) and are independent of the num-
ber (or size) of the evolutionary time steps taken (panel (d)).
Finally, the plot in panel (c) indicates that the relative change
to the model asymptotes to the same value, regardless of the
evolutionary phase at which the perturbation is applied.
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Figure 2. Tests of numerical stability for a 1M⊙ magnetic model withγ = 2. (a) Influence of various magnetic field strengths. (b) Evidence of a smooth
perturbation at a large magnetic field strength with a relatively large radius change. (c) Consistency among models withthe perturbation turned on at various
evolutionary stages. (d) Demonstrating the insensitivityof the perturbation to the number of time steps after the perturbation is enabled.

Beyond testing for numerical stability, we must be as-
sured that the code produces results consistent with reality.
Typically, a comparison with previous studies would be uti-
lized. However, the only such examples computed for evo-
lutionary timescales are for CM Dra (Chabrier et al. 2007;
MacDonald & Mullan 2012). The stellar mass regime oc-
cupied by CM Dra would require the implementation of
FreeEOS, a task reserved for a future investigation. With the
analytical EOS, it would appear there are no models generated
with which to compare. Even LS95 operate over timescales
on the order of a solar-cycle and not evolutionary times.

In the absence of previous results with which to compare,
we opted to impose a weak magnetic field (5 G) on our solar-
calibrated model. Seeing as the properties of the Sun do not
require a magnetic field in order to produce an adequate solar
model (Bahcall et al. 1997), we would expect the solar prop-
erties to remain almost entirely unaffected. As expected, the
magnetically perturbed model still meets our requirementsfor
it to be considered solar-calibrated (see Section2). The model
radius changes by 3 parts in 105 while effective temperature
changes by 4 parts in 106 given the presence of the weak field.

5. CASE STUDY: EF AQUARII

5.1. Standard Models

Standard, non-magnetic mass tracks with solar metallicity
were computed for both EF Aqr A and B with masses of
1.24M⊙ and 0.95M⊙, respectively. Additional mass tracks
were also generated for a scaled-solar metallicity of +0.1 dex.
The two components were unable to be fit with a coeval age,
regardless of the adopted metallicity. This is consistent with
the conclusions ofVos et al.(2012). Two fitting methods were
performed to this end.

We first attempted to fit both components on an age–radius

plane, which is equivalent to fitting on the mass–radius (M–
R) plane. This is illustrated by the solid lines in Figure3(a).
The primary star evolves much more rapidly than secondary,
owing to the rather large mass difference. Thus, the model
radius of the primary inflates to the observed radius at an age
of 2.0 Gyr. The radius of the primary then quickly exceeds the
observational bounds within about 0.1 Gyr. The observational
bounds on the primary radius places tight constraints on the
allowed age our models predict for the system. However, our
model of the secondary does not reach the observed radius
until an age of 6.3 Gyr, an age difference of 4.3 Gyr between
the two components. This 4.3 Gyr difference is consistently
present in our models, including when mass and composition
are allowed to vary within the observed limits (not shown).

Assuming the age of the system was predicted accurately
using models of EF Aqr A in theM–R diagram, we find that
the model radius of EF Aqr B underpredicts the observed ra-
dius by 11%. Again, consistent with the findings ofVos et al.
(2012), who found a radius discrepancy of 9%. Such a dis-
agreement is also broadly consistent with results from other
studies of active EBs (Ribas 2006; Torres et al. 2010).

A second approach was to fit the system on an HR diagram
using the individual mass tracks. Figure3(b) demonstrates
that the standard model tracks do not match the observedTeff–
luminosity of either star, despite fitting the stars individually
in the M–R plane. Our models predict temperatures that are
250 K (4%) and 430 K (8%) hotter than the observations for
the primary and secondary, respectively.

The noticeable temperature disagreements in both stars may
be the result of two possible effects. On the one hand, we
might assume that the age predicted from theM–R plane is
correct and that there only exists a discrepancy with the ef-
fective temperatures. This implies that either the effective
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Figure 3. Individual stellar mass tracks representing EF Aqr A and B (labeled). Non-magnetic mass tracks are shown as a red, solid line whileγ = 2 andγ = 4/3
magnetic tracks are indicated by the blue, long-dash and light-blue, short-dash lines, respectively. The corresponding photospheric magnetic field strengths for
EF Aqr A are 1.6 kG (γ = 2) and 2.6 kG (γ = 4/3). For EF Aqr B they are 3.2 kG (γ = 2) and 5.5 kG (γ = 4/3). (a) Age–radius diagram with the observed radii
marked as gray regions. Vertical dotted lines define the age constraint imposed by EF Aqr A, suggesting the system has an age of 1.3±0.2 Gyr. (b) HR diagram
with the observed data marked as black points.

temperature from the models or the observations is incorrect.
However, since the stars are quite similar to the Sun, it is more
likely the case that our standard models underpredict the ra-
dius of the primary as well, driving up the model-derived ef-
fective temperature. This particular scenario is supported by
Vos et al.(2012) who found both components display obvi-
ous CaII emission that is likely the result of each star having
a magnetically heated chromosphere.

The age inferred from theM–R diagram would then be
older than the true age of the system. Unfortunately, this sce-
nario further complicates the situation regarding EF Aqr B.
If the age of the system is younger than inferred from stan-
dard models of the primary, then the radius discrepancy for
the secondary becomes larger than originally quoted.

5.2. Magnetic Models

Following the results discussed above, magnetic models
were computed for both EF Aqr components using a scaled-
solar heavy element composition. Several models with a mass
of 1.24 M⊙ were generated with various surface magnetic
field strengths. We then found the model with the weakest
field strength required to produce the observed radius andTeff
of EF Aqr A. With γ = 2, we had to prescribe a photospheric
magnetic field strength of 1.6 kG, while withγ = 4/3, a more
intense 2.6 kG field was necessary. The magnetic model
tracks are displayed in Figures3(a) and (b) as blue dashed
lines. The magnetic models of the primary suggest a younger
age of 1.3±0.2 Gyr for the EF Aqr system, as opposed to the
2.0 Gyr age determined from standard models. This younger
age is consistent with the 1.5±0.2 Gyr age derived for the pri-
mary byVos et al.(2012) after fine-tuning the mixing length.

We next had to select a magnetic field strength that would
allow a 0.95M⊙ model to have a radius andTeff compatible
with EF Aqr B at 1.3 Gyr, if finding that unique combination
was possible. Surface magnetic field strengths of 3.2 kG and
5.5 kG were able to produce the required stellar parameters,
with γ = 2 and 4/3, respectively, at an age of 1.35 Gyr. In both
cases, the models were able to reproduce the stellar radius and
Teff within the quoted 1σ uncertainties. Figures3(a) and (b)

demonstrate that the magnetic models do indeed match both
component radii andTeffs at a common age.

Structurally, the addition of a magnetic perturbation within
the models reduces the radial extent of the surface convection
zone. For both stars in EF Aqr, we find the magnetic models
that are sufficient to correct the observed discrepancies have
surface convection zones that are 4% smaller than those in the
standard models, at the same age. The reduction of the surface
convection zone can be attributed to the modified stability cri-
terion as well as modified convective velocities. While only
speculation, we attribute the equality of the percent reduction
of convection zone sizes to coincidence.

6. DISCUSSION

6.1. Field Strengths

The implementation of a magnetic perturbation within stel-
lar evolution models is quite capable of reconciling predicted
model fundamental stellar properties with those determined
observationally, at least for EF Aqr. While it seems plausible
that magnetic fields may suppress thermal convection inside
solar-type stars, how are we to be sure that magnetic fields
may be reasonably invoked for this particular system? Even
if invoking magnetic fields is rational, are the field strengths
required by the models realistic?

Addressing the first question, we showed in Section1
that naturally inefficient convection, as described by the
Bonaca et al.(2012) calibration, was unable to account for
the small values ofαMLT required to mitigate the observed
model-observation disagreements. But, the inability of natu-
rally inefficient convection to provide a solution does not pos-
itively identify magnetic fields as the root cause. However,
there is additional evidence that invoking magnetic fields is
reasonable.

High-resolution spectroscopy of the CaII H and K lines
for both stars in EF Aqr reveals incredibly strong emission
cores superposed on the absorption troughs (Vos et al. 2012).
A search of theROSAT Bright Source Catalogue (Voges et al.
1999) also shows that EF Aqr is a strong X-ray emitter. Cou-
pling these observations with high projected rotational veloc-
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ities extracted from line broadening measurements, suggests
that there is the potential for a strong dynamo mechanism to
be operating. This evidence is only circumstantial, but does
provide tantalizing clues.

For the sake of argument, let us assume that the stars are sig-
nificantly magnetically active. It would then be worthwhileto
compare the strength of the magnetic field for each EF Aqr
component to those values required by the models. Unfortu-
nately, no direct magnetic field strength estimates of EF Aqr
are available, forcing us to base our analysis on indirect mag-
netic field strength estimates.

A natural first step would be to compare the EF Aqr com-
ponents to other known solar-type stars, such as the Sun
and α Cen A and B (see Table2). The Sun’s mean pho-
tospheric magnetic field strength is between 0.1 G and 1
G (Babcock & Babcock 1955; Babcock 1959; Demidov et al.
2002) with local patches of very intense fields (i.e., sunspots)
with strengths on the order of 2–3 kG (Hale 1908). Similarly,
the average longitudinal field strength ofα Cen A was deter-
mined to be less than 0.2 G, after a null detection of a Stokes
V polarization signature (Kochukhov et al. 2011).

The field strengths required by the models of the EF Aqr
components therefore suggest that the stars are pervaded by
magnetic fields that typically characterize the intense regions
of sunspots. This at first appears detrimental to the validity of
the models. However, studies of the active and quiet Sun, par-
ticularly sunspot regions, has led to multiple scaling relations
allowing for an indirect determination of stellar photospheric
magnetic field strengths.

One of these scaling relations was observed to exist be-
tween the X-ray luminosity of an active region and its total un-
signed magnetic flux (Fisher et al. 1998; Pevtsov et al. 2003).
The two observables were found to exhibit a power-law rela-
tion,

Lx ∝ Φp, (82)

where the power-law index,p, was determined to be
1.19±0.04 byFisher et al.(1998). The index was later re-
vised byPevtsov et al.(2003) using a more diverse data set,
including both solar and extrasolar sources.7 Their revised
analysis decreased the index top = 1.15. The magnetic flux
is defined in the usual manner (Equation (67)),

Φ =

∫
S
B ·dÂ =

∫
S
|Bz|dA. (83)

with |Bz| represents the vertical magnetic field strength.
Therefore, if we are able to determine the X-ray luminosity
of the EF Aqr components, it is possible to place a lower limit
on the magnetic field strength at the surface of the two com-
ponents.

The system has a confirmed X-ray counter-part in the
ROSAT All-Sky Survey Bright Source Catalogue (Voges et al.
1999). The X-ray count rate was converted to an X-ray flux
according to the formula derived bySchmitt et al.(1995),

Fx = (5.30HR+8.31)×10−12Xcr, (84)

where HR is the X-ray hardness ratio,8 Xcr is the X-ray count
rate, andFx is the X-ray flux. Finally, the X-ray flux was

7 The total unsigned magnetic flux of the stellar sources was obtained using
direct observational techniques (Saar 1996).

8 There are typically two hardness ratios listed in theROSAT catalog, HR1
and HR2. TheSchmitt et al.(1995) formula requires the use of HR1.

converted to a luminosity using the 172 pc distance quoted by
Vos et al.(2012).

The count rate measured byROSAT was 0.0655±0.0154
counts s−1 with a hardness ratio of 0.32±0.22. This yields
an X-ray flux of 6.55×10−13 erg cm−2. Weighting the con-
tribution of each star to the total X-ray flux is reliably per-
formed in one of two ways: by assuming both stars contribute
equally (valid if for binaries if stars are similar in radius;
Fleming et al. 1989) or weighting proportional tovrot sini
(Pallavicini et al. 1981; Fleming et al. 1989). Given the sim-
ilarity of the two stars in EF Aqr, the precise weighting does
not affect the results. If both stars contribute equally to the
total X-ray flux, then at a distance of 172 pc, the X-ray lu-
minosity of each component isLx = 1.16× 1030 erg s−1.
Alternatively, weighting the two stars based on their pro-
jected rotational velocity givesLx,A = 1.25×1030 erg s−1 and
Lx,B = 1.07×1030 erg s−1.

To provide a comparison, the X-ray luminosity of a typical
solar active region is on the order of 1027 erg s−1 (Fisher et al.
1998; Pevtsov et al. 2003). The Sun, on average, has a total
X-ray luminosity of 1027 erg s−1 up to nearly 1028 erg s−1,
depending on where in its activity cycle it is located (Ayers
2009). Similarly,Ayers(2009) monitored the X-ray luminos-
ity of α Cen and found the primary had an X-ray luminosity
around half that of the Sun (approximately 1027 erg s−1) and
the secondary had about twice the X-ray luminosity of the
Sun (about 1028 erg s−1). Further estimates for the X-ray lu-
minosity ofα Cen A and B comes fromROSAT, which yields
luminosities between 1027 erg s−1 and 1028 erg s−1 for each
component, consistent with Ayers’ analysis. Table2 provides
a comparison of how these quantities translate to magnetic
field strengths.

Comparisons with the Sun andα Cen show that each com-
ponent in EF Aqr has an X-ray luminosity 2–3 orders of mag-
nitude greater than “typical” G and early-K stars. Again,
while not indicative of causation, the correlation betweenhigh
levels of X-ray emission and magnetic activity strongly sug-
gests that EF Aqr is incredibly active. Given this information,
our initial assumption that the stars are active seems valid.
Therefore, the implementation of a magnetic perturbation in
stellar models of this system appears warranted.

The amount of vertical magnetic flux near the surface of
each star may then be found using thePevtsov et al.(2003)
scaling relation. This suggestsΦ = 1.39× 1026 Mx asso-
ciated with each component (given equal flux contribution).
Converting to a magnetic field strength involves dividing the
unsigned magnetic flux by the total area through which the
field is penetrating. For our purposes, the area is the entiresur-
face area of the star. Therefore, we find the vertical magnetic
field strength for the primary and secondary of EF Aqr to be
1.3 kG and 2.5 kG, regardless of the adopted flux weighting,
respectively. Note, this is the vertical magnetic field strength
and sets a lower limit to the total magnetic field strength. It
should also be mentioned that the X-ray luminosities calcu-
lated for EF Aqr A and B are near the edge of the data sample
utilized by Pevtsov et al., although no extrapolation of there-
lation was required.

Further estimates of the magnetic field strengths may be
found by applying a scaling relation using the CaII K line
core emission (Schrijver et al. 1989). The scaling relation was
developed by correlating CaII K line core emission and the
magnetic flux density of solar active regions and their sur-
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Table 2
Estimated Magnetic Field Strengths (in G)

Star Direct X-Ray CaII DSEP

Sun 0.1 - 1.0 5 - 20 · · · · · ·
α Cen A < 0.2 ∼3 · · · · · ·
α Cen B · · · ∼49 · · · · · ·
EF Aqr A · · · 1300 830 1600 - 2600
EF Aqr B · · · 2500 3300 3200 - 5500

roundings. The relation between the two was found to be

Ic−0.13
Iw

= 0.008〈B f 〉0.6 (85)

whereIc is the intensity of the emission line core,Iw is the
intensity of the line wing. While the relation was derived for
small, local active regions,Schrijver et al.(1989) suggest that
there is no reason to believe that the relation would not hold
for hemispherical averages of solar-type stars.

Using the spectra provided byVos et al.(2012) for the CaII
K core emission lines from each EF Aqr component, we were
able to estimate the magnetic field strength of each compo-
nent. Spectra for the primary indicate that the average mag-
netic field strength,〈B f 〉, is equal to 830 G. Similarly, for
EF Aqr B,〈B f 〉 = 3.3 kG. The values quoted above are derived
from rough approximations of the core and wing intensities.
However, we do not foresee the values of〈B f 〉 changing rad-
ically with more precise line intensity measurements. We do
caution that the results for EF Aqr B require an extrapolation
of the CaII relation and the data for EF Aqr A place it near
the edge of the derived relation where only a few data points
exist.

Based on the scaling relations for X-ray emission and
Ca II K line core emission, the magnetic field strength for
the primary and secondary is seen to be approximately 1 kG
and 3 kG, respectively. The magnetic field strengths required
by the models are therefore within a factor of two of the pre-
dicted field strengths, regardless of the adoptedγ value. Since
we expect the X-ray emission prediction to be a lower limit to
the full magnetic field strength, this is extremely encouraging.
The models do not require abnormally large field strengths to
reconcile the model properties with those from observations,
particularly when aγ value of 2 is adopted.

6.2. Implications

The introduction of self-consistent magnetic stellar evo-
lution models has multiple applications, ranging from stud-
ies of exoplanet host stars (Torres 2007; Charbonneau et al.
2009; Muirhead et al. 2012) to investigations of cataclysmic
variable (CV) donor stars (Knigge et al. 2011), as well
as to studies attempting to probe the stellar initial mass
function of young clusters, where stars are typically very
magnetically active (Johns-Krull 2007; Jackson et al. 2009;
Yang & Johns-Krull 2011). Although, most obvious, are the
implications for studies of low-mass eclipsing binary sys-
tems (see, e.g.,Torres et al. 2010; Parsons et al. 2012, and
references therein). Low-mass stellar evolution models have
been highly criticized for being unable to predict the radii
and effective temperatures of DEB stars. Models incorporat-
ing magnetic effects open the door to probing the underlying
cause of the model-observation disagreements and providing
semi-empirical corrections to models.

Magnetic fields have long been theorized as the culprit, but

previous generations of models have only treated magnetic
fields in an ad hoc manner. Comparing the results of these
methods with the one presented in this work, both in terms of
surface parameters and the underlying interior structure,will
provide an interesting test of their validity. Ultimately,the ad
hoc models disagree on the dominant physical mechanism un-
derlying the observed discrepancies. The availability of self-
consistent magnetic models should help to settle the debateas
to which mechanism (suppressed convection or starspots) is
most at work.

For EF Aqr, the models suggest that magnetic suppression
of thermal convection is sufficient to reconcile the models
with the observations. Since stars with small convective en-
velopes, such as those discussed in this work, are more sen-
sitive to adjustments of the convective properties, it is not
wholly surprising that suppressing convection is sufficient to
explain the observations. Whether this mechanism will be ad-
equate for stars near the fully convective boundary has yet to
be seen. Future work modeling the lowest-mass DEB sys-
tems will clarify this ambiguity. Regardless, this may suggest
why the largest radius deviations are predominantly observed
at higher masses (Feiden & Chaboyer 2012), with the notable
exception of CM Dra (Terrien et al. 2012).

The nature of our models allows for independent verifica-
tion of the magnetic field strengths required as input. While
the indirect estimates provided by X-ray emission and CaII K
emission are encouraging, confirmation of these results using
high resolution Zeeman spectroscopy, spectropolarimetry, or
Zeeman–Doppler imaging (ZDI) is preferred. Unfortunately,
these observations are difficult for fast rotators, such as those
that comprise most DEB systems. They are also difficult for
distant systems, where the short integration time requiredby
ZDI inhibits the ability of acquiring measurements with suffi-
cient signal-to-noise (see the reviews byDonati & Landstreet
2009; Reiners 2012). Once a magnetic field is detected, there
exists the question of whether the observed strength is indica-
tive of the total magnetic field strength. Field strengths de-
rived for stars with spectral-type K and M using StokesV
observations appear to yield only around 10% of the total
magnetic field strength compared to observations in Stokes
I (Reiners & Basri 2009). This is a consequence of the fact
that regions of opposite polarity tend to cancel out in Stokes
V , making it most sensitive to the large-scale component, not
the small-scale fields thought to pervade low-mass stars. How
to accurately account for this when testing the models is not
fully clear and will require investigation. As more stars across
all spectral types are observed in both StokesV andI, a more
coherent picture is sure to develop.

Magnetic models may also be useful for transiting ex-
oplanet surveys, particularly those focused on M-dwarfs
(e.g., MEarth transit survey;Nutzman & Charbonneau 2008;
Irwin et al. 2009). One of the largest uncertainties in deriv-
ing the properties of a transiting planet is the radius of the
host star. The lack of reliability involved in predicting low-
mass stellar radii from evolution models has deterred the use
of models as predictors of exoplanet host-star radii (Torres
2007; Charbonneau et al. 2009). Shoring up these deficien-
cies may lead to more accurate predictions of host star radii
from stellar models, circumventing, for a time, the need for
lengthy and costly observations. This would be most useful in
identifying interesting follow-up targets by providing a better
estimate of the habitable zone (Muirhead et al. 2012).

There are certainly caveats with models, as other large un-
certainties exist in predicting the properties of a single star
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from stellar evolution mass tracks (Basu et al. 2012). How-
ever, work is being performed to alleviate some of these
uncertainties by calibrating models to asteroseismic data
(Bonaca et al. 2012). Low-mass stars are also less sensitive
to the input parameters of stellar models than their solar-type
counterparts, reducing the associated uncertainties. Stellar
evolution models may therefore provide a fast and reliable es-
timate of the host star properties, depending on the required
level of precision.

Since most M-dwarfs being surveyed are nearby, there is
a good chance that they may have an X-ray counterpart in
either the Bright Source or Faint Source Catalogue from the
ROSAT All-Sky Survey (Voges et al. 1999, 2000). As was
demonstrated in Section6.1, magnetic field strengths required
by the models are within about a factor of two (or better, ifγ =
2 is adopted) of those predicted by the X-ray scaling relation
of Pevtsov et al.(2003). This will allow an intelligent choice
of the magnetic field strength used as an input for the models,
thus producing more reliable results from stellar models.

All told, the introduction of a self-consistent set of magnetic
stellar evolution models provides the potential for modelsto
be used with greater reliability in a wide range of applica-
tions. There still exist several challenges that require attention
(Boyajian et al. 2012), but this is a first step in addressing key
issues that have been raised in the past two decades.
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