845 research outputs found

    Gabor analysis over finite Abelian groups

    Full text link
    The topic of this paper are (multi-window) Gabor frames for signals over finite Abelian groups, generated by an arbitrary lattice within the finite time-frequency plane. Our generic approach covers simultaneously multi-dimensional signals as well as non-separable lattices. The main results reduce to well-known fundamental facts about Gabor expansions of finite signals for the case of product lattices, as they have been given by Qiu, Wexler-Raz or Tolimieri-Orr, Bastiaans and Van-Leest, among others. In our presentation a central role is given to spreading function of linear operators between finite-dimensional Hilbert spaces. Another relevant tool is a symplectic version of Poisson's summation formula over the finite time-frequency plane. It provides the Fundamental Identity of Gabor Analysis.In addition we highlight projective representations of the time-frequency plane and its subgroups and explain the natural connection to twisted group algebras. In the finite-dimensional setting these twisted group algebras are just matrix algebras and their structure provides the algebraic framework for the study of the deeper properties of finite-dimensional Gabor frames.Comment: Revised version: two new sections added, many typos fixe

    A Deformation Quantization Theory for Non-Commutative Quantum Mechanics

    Full text link
    We show that the deformation quantization of non-commutative quantum mechanics previously considered by Dias and Prata can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined, and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef.Comment: Submitted for publicatio

    Asymptotic boundary forms for tight Gabor frames and lattice localization domains

    Full text link
    We consider Gabor localization operators Gϕ,ΩG_{\phi,\Omega} defined by two parameters, the generating function ϕ\phi of a tight Gabor frame {ϕλ}λΛ\{\phi_\lambda\}_{\lambda \in \Lambda}, parametrized by the elements of a given lattice ΛR2\Lambda \subset \Bbb{R}^2, i.e. a discrete cocompact subgroup of R2\Bbb{R}^2, and a lattice localization domain ΩR2\Omega \subset \Bbb{R}^2 with its boundary consisting of line segments connecting points of Λ\Lambda. We find an explicit formula for the boundary form BF(ϕ,Ω)=AΛlimRPF(Gϕ,RΩ)RBF(\phi,\Omega)=\text{A}_\Lambda \lim_{R\rightarrow \infty}\frac{PF(G_{\phi,R\Omega})}{R}, the normalized limit of the projection functional PF(Gϕ,Ω)=i=0λi(Gϕ,Ω)(1λi(Gϕ,Ω))PF(G_{\phi,\Omega})=\sum_{i=0}^{\infty}\lambda_i(G_{\phi,\Omega})(1-\lambda_i(G_{\phi,\Omega})), where λi(Gϕ,Ω)\lambda_i(G_{\phi,\Omega}) are the eigenvalues of the localization operators Gϕ,ΩG_{\phi,\Omega} applied to dilated domains RΩR\Omega, RR is an integer and AΛ\text{A}_\Lambda is the area of the fundamental domain of the lattice Λ\Lambda.Comment: 35 page

    Recent Progress in Shearlet Theory: Systematic Construction of Shearlet Dilation Groups, Characterization of Wavefront Sets, and New Embeddings

    Get PDF
    The class of generalized shearlet dilation groups has recently been developed to allow the unified treatment of various shearlet groups and associated shearlet transforms that had previously been studied on a case-by-case basis. We consider several aspects of these groups: First, their systematic construction from associative algebras, secondly, their suitability for the characterization of wavefront sets, and finally, the question of constructing embeddings into the symplectic group in a way that intertwines the quasi-regular representation with the metaplectic one. For all questions, it is possible to treat the full class of generalized shearlet groups in a comprehensive and unified way, thus generalizing known results to an infinity of new cases. Our presentation emphasizes the interplay between the algebraic structure underlying the construction of the shearlet dilation groups, the geometric properties of the dual action, and the analytic properties of the associated shearlet transforms.Comment: 28 page

    Entanglement entropy of fermions in any dimension and the Widom conjecture

    Full text link
    We show that entanglement entropy of free fermions scales faster then area law, as opposed to the scaling Ld1L^{d-1} for the harmonic lattice, for example. We also suggest and provide evidence in support of an explicit formula for the entanglement entropy of free fermions in any dimension dd, Sc(Γ,Ω)Ld1logLS\sim c(\partial\Gamma,\partial\Omega)\cdot L^{d-1}\log L as the size of a subsystem LL\to\infty, where Γ\partial\Gamma is the Fermi surface and Ω\partial\Omega is the boundary of the region in real space. The expression for the constant c(Γ,Ω)c(\partial\Gamma,\partial\Omega) is based on a conjecture due to H. Widom. We prove that a similar expression holds for the particle number fluctuations and use it to prove a two sided estimates on the entropy SS.Comment: Final versio

    On Exceptional Times for Pointwise Convergence of Integral Kernels in Feynman–Trotter Path Integrals

    Get PDF
    In the first part of the paper we provide a survey of recent results concerning the problem of pointwise convergence of integral kernels in Feynman path integrals, obtained by means of time-frequency analysis techniques. We then focus on exceptional times, where the previous results do not hold, and we show that weaker forms of convergence still occur. In conclusion we offer some clues about possible physical interpretation of exceptional times

    Quantum theta functions and Gabor frames for modulation spaces

    Get PDF
    Representations of the celebrated Heisenberg commutation relations in quantum mechanics and their exponentiated versions form the starting point for a number of basic constructions, both in mathematics and mathematical physics (geometric quantization, quantum tori, classical and quantum theta functions) and signal analysis (Gabor analysis). In this paper we try to bridge the two communities, represented by the two co--authors: that of noncommutative geometry and that of signal analysis. After providing a brief comparative dictionary of the two languages, we will show e.g. that the Janssen representation of Gabor frames with generalized Gaussians as Gabor atoms yields in a natural way quantum theta functions, and that the Rieffel scalar product and associativity relations underlie both the functional equations for quantum thetas and the Fundamental Identity of Gabor analysis.Comment: 38 pages, typos corrected, MSC class change

    Periodic and discrete Zak bases

    Full text link
    Weyl's displacement operators for position and momentum commute if the product of the elementary displacements equals Planck's constant. Then, their common eigenstates constitute the Zak basis, each state specified by two phase parameters. Upon enforcing a periodic dependence on the phases, one gets a one-to-one mapping of the Hilbert space on the line onto the Hilbert space on the torus. The Fourier coefficients of the periodic Zak bases make up the discrete Zak bases. The two bases are mutually unbiased. We study these bases in detail, including a brief discussion of their relation to Aharonov's modular operators, and mention how they can be used to associate with the single degree of freedom of the line a pair of genuine qubits.Comment: 15 pages, 3 figures; displayed abstract is shortened, see the paper for the complete abstrac

    The finiteness of the four dimensional antisymmetric tensor field model in a curved background

    Full text link
    A renormalizable rigid supersymmetry for the four dimensional antisymmetric tensor field model in a curved space-time background is constructed. A closed algebra between the BRS and the supersymmetry operators is only realizable if the vector parameter of the supersymmetry is a covariantly constant vector field. This also guarantees that the corresponding transformations lead to a genuine symmetry of the model. The proof of the ultraviolet finiteness to all orders of perturbation theory is performed in a pure algebraic manner by using the rigid supersymmetry.Comment: 23 page
    corecore