13 research outputs found

    Terahertz Near-field Investigation of a Plasmonic GaAs Superlens

    Get PDF
    This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration. For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 ”m, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared

    Contextual Factors Influencing Perceived Importance and Trade-offs of Information Quality

    Get PDF
    With the ever-increasing importance of information quality (IQ), research focuses mainly on two approaches, criteria and assessment. Researchers developed a number of frameworks, criteria lists, and approaches for assessing and measuring IQ. Several studies confirm that IQ is a multi-criteria concept, and its evaluation should consider different aspects. However, research and discussions with practitioners indicate that assessing and managing IQ in organizations remains challenging. Despite the subjective character of quality, foremost frameworks and assessment methodologies do not often consider the context in which the assessment is performed. Trade-offs between criteria are often not considered in most frameworks despite strong evidence in the literature that suggests trade-off relations exist. Underlying a user-centric view, this study analyses the importance of selected contextual factors and their impact on IQ criteria. Empirical data are gathered using a questionnaire approach. Results suggest significant context impacts and show that the perceived importance of information quality criteria changed over the last decade. Information and communication technology, available resources, the user role, the department, and the type of information systems influence respondents’ perception of IQ. These factors are incorporated in a context-oriented IQ research framework

    Terahertz Near-field Investigation of a Plasmonic GaAs Superlens

    Get PDF
    This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration. For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 ”m, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared

    Terahertz Near-field Investigation of a Plasmonic GaAs Superlens

    No full text
    This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration. For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 ”m, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared

    Broadband analysis and self-control of spectral fluctuations in a passively phase-stable Er-doped fiber frequency comb

    No full text
    Carrier-envelope and optical phase noise of a femtosecond frequency comb based on Er-doped fiber technology is investigated and minimized without exploiting active external references. Ultrabroadband, coherent, and tailorable supercontinua are generated in a highly nonlinear germanosilicate fiber assembly. Difference frequency mixing between comb modes in their spectral extrema passively eliminates the carrier-envelope phase slip. This step generates an inherently offset-free comb with a relative frequency stability better than 10−21. In contrast, the phase fluctuations at the carrier frequency of 193 THz are increased as compared to the fundamental comb. Their level matches the value found by parabolic extrapolation of the phase noise of the fundamental comb to zero frequency. The latter is unambiguously accessible by means of any beat note centered at the carrier-envelope offset frequency. All these findings rely on strong correlations between the comb modes that are quantitatively described by an elastic tape model, underlining the deterministic character of the processes involved. The superior optical phase noise of the fundamental comb is transferred to the difference-frequency comb while not compromising the inherent cancellation of the carrier-envelope offset frequency. In this way, the optical linewidth of the passively phase-locked comb is reduced from 100 kHz to a measured value of 5 kHz, which is limited by the cw laser reference used for out-of-loop characterization.publishe

    Release of Immunomodulatory Ebola Virus Glycoprotein-Containing Microvesicles Is Suppressed by Tetherin in a Species-Specific Manner

    No full text
    Summary: The Ebola virus glycoprotein (EBOV-GP) forms GP-containing microvesicles, so-called virosomes, which are secreted from GP-expressing cells. However, determinants of GP-virosome release and their functionality are poorly understood. We characterized GP-mediated virosome formation and delineated the role of the antiviral factor tetherin (BST2, CD317) in this process. Residues in the EBOV-GP receptor-binding domain (RBD) promote GP-virosome secretion, while tetherin suppresses GP-virosomes by interactions involving the GP-transmembrane domain. Tetherin from multiple species interfered with GP-virosome release, and tetherin from the natural fruit bat reservoir showed the highest inhibitory activity. Moreover, analyses of GP from various ebolavirus strains, including the EBOV responsible for the West African epidemic, revealed the most efficient GP-virosome formation by highly pathogenic ebolaviruses. Finally, EBOV-GP-virosomes were immunomodulatory and acted as decoys for EBOV-neutralizing antibodies. Our results indicate that GP-virosome formation might be a determinant of EBOV immune evasion and pathogenicity, which is suppressed by tetherin. : Nehls et al. demonstrate that the glycoprotein of the highly pathogenic Ebola virus is incorporated into secretory vesicles, called GP-virosomes, to dampen the immune response and capture neutralizing antibodies. The lack of replication competence and the incorporation of antigenically intact GP might qualify GP-virosomes as safe vaccine candidates. Keywords: Ebola virus, glycoprotein, microvesicles, virosome, exosome, tetherin, immune modulation, immune evasion, antiviral immune response, neutralizing antibod

    Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure

    No full text
    Intervertebral disc structures are exposed to wide ranges of intradiscal hydrostatic pressure during different loading excercises and are at their minimum during lying or relaxed sitting and at maximum during lifting weights with a round back. We hypothesize that these different loading magnitudes influence the intervertebral disc (IVD) by alteration of disc matrix turnover depending on their magnitudes. Therefore the aim of this study was to assess changes in gene expression of human nucleus cells after the application of low hydrostatic pressure (0.25 MPa) and high hydrostatic pressure (2.5 MPa). IVD cells isolated from the nucleus of human (n = 18) and bovine (n = 24 from four animals) disc biopsies were seeded into three-dimensional collagen type-I matrices and exposed to the different loading magnitudes by specially developed pressure chambers. The lower pressure range (0.25 MPa, 30 min, 0.1 Hz) was applied with a recently published device by using an external compression cylinder. For the application of higher loads (2.5 MPa, 30 min, 0.1 Hz) the cell-loaded collagen gels were sealed into sterile bags with culture medium and stimulated in a newly developed water-filled compression cylinder by using a loading frame. These methods allowed the comparison of loading regimes in a wide physiological range under an equal three-dimensional culture conditions. Cells were harvested 24 h after the end of stimulation and changes in the expression of genes known to influence IVD matrix turnover (collagen-I, collagen-II, aggrecan, MMP1, MMP2, MMP3, MMP13) were analyzed by real-time RT-PCR. A Wilcoxon signed-rank test1 and a Wilcoxon 2-sample test2 were performed to detect differences between the stimulated and control samples1 and differences between low and high hydrostatic pressure2. Multiple testing was considered by adjusting the p value appropriately. Both regimes of hydrostatic pressure influenced gene expression in nucleus cells with opposite tendencies for the matrix forming proteins aggrecan and collagen type-I in response to the two different pressure magnitudes: Low hydrostatic-pressure (0.25 MPa) tended to increase collagen-I and aggrecan expression of human nucleus cells (P < 0.05) but only to a small degree. High hydrostatic pressure (2.5 MPa) tended to decrease gene expression of all anabolic proteins with significant effects on aggrecan expression of nucleus cells (P = 0.004). Low hydrostatic pressure had no influence on the expression of matrix metalloproteinases (MMP1, MMP2, MMP3 and MMP13). In contrast, high hydrostatic pressure tended to increase the expression of MMP1, MMP3 and MMP13 of human nucleus cells with high individual-individual variations. The decreased expression of aggrecan (P = 0.008) and collagen type II (P = 0.023) and the increased MMP3 expression (P = 0.008) in response to high hydrostatic pressure could be confirmed in additional experiments with bovine nucleus cells. These results suggest that hydrostatic pressure as one of the physiological stimuli of the IVD may influence matrix turnover in a magnitude dependent way. Low hydrostatic pressure (0.25 MPa) has quite small influences with a tendency to anabolic effects, whereas high hydrostatic pressure (2.5 MPa) tends to decrease the matrix protein expression with a tendency to increase some matrix-turnover enzymes. Therefore, hydrostatic pressure may regulate disc matrix turnover in a dose-dependent way

    Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures

    No full text
    The possibility of hybridizing collective electronic motion with mid-infrared light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement1, 2, 3, 4, 5 and tailored nanophotonics6, 7, 8. Graphene9, 10 and its heterostructures11, 12, 13, 14 have attracted particular attention because the absence of an energy gap allows plasmon polaritons to be tuned continuously. Here, we introduce black phosphorus15, 16, 17, 18, 19 as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, black phosphorus is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron–hole pairs by ultrashort near-infrared pulses. Here, we design a SiO2/black phosphorus/SiO2 heterostructure in which the surface phonon modes of the SiO2 layers hybridize with surface plasmon modes in black phosphorus that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO2, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron–hole plasma, coherent hybrid polariton waves can be launched by a broadband mid-infrared pulse coupled to the tip of a scattering-type scanning near-field optical microscopy set-up. The scattered radiation allows us to trace the new hybrid mode in time, energy and space. We find that the surface mode can be activated within ∌50 fs and disappears within 5 ps, as the electron–hole pairs in black phosphorus recombine. The excellent switching contrast and switching speed, the coherence properties and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices
    corecore