7 research outputs found

    High-Energy Molecular-Frame Photoelectron Angular Distributions: A Molecular Bond-Length Ruler

    Full text link
    We present an experimental and theoretical study of core-level ionization of small hetero- and homo-nuclear molecules employing circularly polarized light and address molecular-frame photoelectron angular distributions in the light's polarization plane (CP-MFPADs). We find that the main forward-scattering peaks of CP-MFPADs are slightly tilted with respect to the molecular axis. We show that this tilt angle can be directly connected to the molecular bond length by a simple, universal formula. The extraction of the bond length becomes more accurate as the photoelectron energy is increased. We apply the derived formula to several examples of CP-MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. The photoelectron kinetic energies range from 70 to 1000~eV and the extracted bond lengths agree well with the known bond length of the CO molecule in its ground state. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in case of homo-nuclear diatomic molecules as N2_2

    Early assessment of high-intensity focused ultrasound treatment of benign thyroid nodules by scintigraphic means

    Get PDF
    Background: High-intensity focused ultrasound (HIFU) allows to inflict intracorporal thermal lesions without penetrating the skin or damaging the surrounding tissue. This analysis intends to assess the magnitude of HIFU-induced ablations within benign thyroid nodules using scintigraphic imaging with 99mTc. Methods: Ten cold, hot, or indifferent nodules were treated using multiple pulses of HIFU to induce temperatures of around 85°C within the ablation zone. Pre- and posttreatment, uptake values of 99mTc pertechnetate or 99mTc-MIBI were recorded. The pre-post reduction of nodular uptake was evaluated to assess ablation magnitude. Results: Relative nodular uptake in relation to total thyroidal uptake decreased after one session of HIFU in all cases. Median 99mTc-MIBI uptake reduction was 35.5% (ranging from 11% to 57%; p < 0.1), while 99mTc-pertechnetate scintigraphy showed a median uptake reduction of 27% (range 10% to 44%; p < 0.1). No major complications were observed. Conclusions: HIFU appears to be safe and is an easy to perform means of thermal ablation. This study shows that HIFU treatment in thyroidal nodules can be evaluated by scintigraphic means shortly after the intervention. Due to small sample size, the exact magnitude of HIFU ablation efficiency in thyroidal nodules remains a value to beassessed in a larger study

    High-energy molecular-frame photoelectron angular distributions: a molecular bond-length ruler

    No full text
    We present a study on molecular-frame photoelectron angular distributions (MFPADs) of small molecules using circularly polarized synchrotron light. We find that the main forward-scattering peaks of the MFPADs are slightly tilted with respect to the molecular axis. This tilt angle is directly connected to the molecular bond length by a simple, universal formula. We apply the derived formula to several examples of MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in the case of homo-nuclear diatomic molecules such as N2

    Double Core-Hole Generation in O_{2} Molecules Using an X-Ray Free-Electron Laser: Molecular-Frame Photoelectron Angular Distributions.

    Get PDF
    We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations

    Benjamin doubaliphotoelectron diffraction imaging of a molecular breakup using an x-ray free-electron laser

    Get PDF
    A central motivation for the development of x-ray free-electron lasers has been the prospect of time-resolved single-molecule imaging with atomic resolution. Here, we show that x-ray photoelectron diffraction—where a photoelectron emitted after x-ray absorption illuminates the molecular structure from within—can be used to image the increase of the internuclear distance during the x-ray-induced fragmentation of an O2 molecule. By measuring the molecular-frame photoelectron emission patterns for a two-photon sequential K-shell ionization in coincidence with the fragment ions, and by sorting the data as a function of the measured kinetic energy release, we can resolve the elongation of the molecular bond by approximately 1.2 a.u. within the duration of the x-ray pulse. The experiment paves the road toward time-resolved pump-probe photoelectron diffraction imaging at high-repetition-rate x-ray free-electron lasers

    Investigating charge-up and fragmentation dynamics of oxygen molecules after interaction with strong X-ray free-electron laser pulses

    No full text
    During the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light–matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process. Here, we demonstrate that by analyzing photoelectron angular emission distributions and kinetic energy release of charge states of ionic molecular fragments, we can obtain a detailed understanding of the charge-up and fragmentation dynamics. Our novel approach allows for gathering such information without the need of complex ab initio modeling. As an example, we provide a detailed view on the processes happening on a femtosecond time scale in oxygen molecules exposed to intense XFEL pulses
    corecore