121 research outputs found

    Ezrin interacts with the SARS coronavirus spike protein and restrains infection at the entry stage

    Get PDF
    Β© 2012 Millet et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Entry of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and its envelope fusion with host cell membrane are controlled by a series of complex molecular mechanisms, largely dependent on the viral envelope glycoprotein Spike (S). There are still many unknowns on the implication of cellular factors that regulate the entry process. Methodology/Principal Findings: We performed a yeast two-hybrid screen using as bait the carboxy-terminal endodomain of S, which faces the cytosol during and after opening of the fusion pore at early stages of the virus life cycle. Here we show that the ezrin membrane-actin linker interacts with S endodomain through the F1 lobe of its FERM domain and that both the eight carboxy-terminal amino-acids and a membrane-proximal cysteine cluster of S endodomain are important for this interaction in vitro. Interestingly, we found that ezrin is present at the site of entry of S-pseudotyped lentiviral particles in Vero E6 cells. Targeting ezrin function by small interfering RNA increased S-mediated entry of pseudotyped particles in epithelial cells. Furthermore, deletion of the eight carboxy-terminal amino acids of S enhanced S-pseudotyped particles infection. Expression of the ezrin dominant negative FERM domain enhanced cell susceptibility to infection by SARS-CoV and S pseudotyped particles and potentiated S-dependent membrane fusion. Conclusions/Significance: Ezrin interacts with SARS-CoV S endodomain and limits virus entry and fusion. Our data present a novel mechanism involving a cellular factor in the regulation of S-dependent early events of infection.This work was supported by the Research Grant Council of Hong Kong (RGC#760208)and the RESPARI project of the International Network of Pasteur Institutes

    Drosophila muscleblind Codes for Proteins with One and Two Tandem Zinc Finger Motifs

    Get PDF
    Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its normal function, which ultimately leads to mis-spliced mRNAs, a major cause of the disease. Muscleblind-proteins bind to RNAs via N-terminal zinc fingers of the Cys3-His type. These zinc fingers are arranged in one (invertebrates) or two (vertebrates) tandem zinc finger (TZF) motifs with both fingers targeting GC steps in the RNA molecule. Here I show that mbl genes in Drosophila and in other insects also encode proteins with two TZF motifs, highly similar to vertebrate MBNL proteins. In Drosophila the different protein isoforms have overlapping but possibly divergent functions in vivo, evident by their unequal capacities to rescue the splicing defects observed in mbl mutant embryos. In addition, using whole transcriptome analysis, I identified several new splicing targets for Mbl in Drosophila embryos. Two of these novel targets, kkv (krotzkopf-verkehrt, coding for Chitin Synthase 1) and cora (coracle, coding for the Drosophila homolog of Protein 4.1), are not muscle-specific but expressed mainly in epidermal cells, indicating a function for mbl not only in muscles and the nervous system

    Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux

    Get PDF
    SUMMARY Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure

    Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Get PDF
    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions

    A Proteomic and Cellular Analysis of Uropods in the Pathogen Entamoeba histolytica

    Get PDF
    Exposure of Entamoeba histolytica to specific ligands induces cell polarization via the activation of signalling pathways and cytoskeletal elements. The process leads to formation of a protruding pseudopod at the front of the cell and a retracting uropod at the rear. In the present study, we show that the uropod forms during the exposure of trophozoites to serum isolated from humans suffering of amoebiasis. To investigate uropod assembly, we used LC-MS/MS technology to identify protein components in isolated uropod fractions. The galactose/N-acetylgalactosamine lectin, the immunodominant antigen M17 (which is specifically recognized by serum from amoeba-infected persons) and a few other cells adhesion-related molecules were primarily involved. Actin-rich cytoskeleton components, GTPases from the Rac and Rab families, filamin, Ξ±-actinin and a newly identified ezrin-moesin-radixin protein were the main factors found to potentially interact with capped receptors. A set of specific cysteine proteases and a serine protease were enriched in isolated uropod fractions. However, biological assays indicated that cysteine proteases are not involved in uropod formation in E. histolytica, a fact in contrast to the situation in human motile immune cells. The surface proteins identified here are testable biomarkers which may be either recognized by the immune system and/or released into the circulation during amoebiasis

    A late role for a subset of neurogenic genes to limit sensory precursor recruitments in Drosophila embryos

    Full text link
    In Drosophila , mutations in a class of genes, the neurogenic genes, produce an excess of neurons. This neural hyperplasia has been attributed to the formation of more than the normal number of neuronal precursor cells at the expense of epidermal cells. In order to find out whether the neurogenic genes only act at this intial step of neurogenesis, we studied the replication pattern of the sensory organ precursor cells by monitoring BrdU incorporation in embryos mutant for Notch ( N ), Delta ( Dl ), mastermind ( mam ), almondex ( amx ), neuralized ( neu ), big brain ( bib ) and the Enhancer of split -Complex ( E ( spl )- C ). Using temperature sensitive alleles of two of the neurogenic genes, DI and N , we also induced an acute increase of replicating sensory precursors by shifting briefly to the restricted temperature. We have found that the loss of function of all the seven neurogenic loci that were tested causes an increase in replicating sensory precursor cells, consistent with the model that these neurogenic genes normally participate in the process of restricting the number of neuronal precursors. Whereas the temporal pattern of replication appeared normal in mutants of five of the seven neurogenic loci, in N and mam embryos replicating PNS cells are present beyond the time when they normally undergo replication. Experiments with colchicine suggest that many of these late replicating cells may be newly emerging precursors and probably not additional cell divisions of already recruited precursors. Thus, different neurogenic genes may be required over different periods of time for the specification of sensory precursor cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47511/1/427_2004_Article_BF00188736.pd
    • …
    corecore