409 research outputs found

    The Clinical Relevance of Circulating Tumor Cells in Early Breast Cancer

    Get PDF
    Circulating tumor cells (CTCs) are considered to be evading cancer cells that have been shed or actively invaded from the primary tumor into the blood circulation or lymphatic system and which may finally extravasate to found metastases. CTCs as “liquid biopsy” hold great promise to be a powerful non-invasive real-time measurable biomarker for predicting clinical outcomes and cancer treatment response. Several studies evaluated the role of CTC presence and count in the neoadjuvant and adjuvant setting of early breast cancer (EBC) and revealed their significant prognostic value. In this chapter, we highlight the clinical relevance of CTCs in early breast cancer (EBC) and state the urgency for further research in this field to definitely translate this marker from bench to bedside

    Monitoring in metastatic breast cancer: Is imaging outdated in the era of circulating tumor cells?

    Get PDF
    In clinical practice imaging technologies such as computed tomography (CT), positron emission tomography (PET)/CT and magnetic resonance imaging (MRI) are well-established methods for monitoring metastatic breast cancer (MBC) patients and for assessing therapeutic efficacy. However, several weeks of treatment are required before these technologies can offer any reliable information on effective disease regression, and, in the meanwhile, the patients are exposed to potentially unnecessary therapy. Circulating tumor cells (CTCs) have been shown to be powerful prognostic and predictive markers and provide clinicians with valuable information. However, in one clinical trial, an early change of chemotherapy based on CTC detection did not result in improved survival. Currently, CTC detection outside clinical trials should be limited to selected clinical situations, i.e. increased treatment toxicity or as risk estimation

    Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer.</p> <p>Results</p> <p>Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines.</p> <p>13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, <it>N</it><sup>2</sup>,<it>N</it><sup>2</sup>,7-trimethylguanosine, <it>N</it><sup>6</sup>-methyl-<it>N</it><sup>6</sup>-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl)-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells.</p> <p>Conclusion</p> <p>The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible biomedical markers for breast carcinoma <it>in vivo</it>.</p

    Propensity Scoring after Multiple Imputation in a Retrospective Study on Adjuvant Radiation Therapy in Lymph-Node Positive Vulvar Cancer

    Get PDF
    Propensity scoring (PS) is an established tool to account for measured confounding in non-randomized studies. These methods are sensitive to missing values, which are a common problem in observational data. The combination of multiple imputation of missing values and different propensity scoring techniques is addressed in this work. For a sample of lymph node-positive vulvar cancer patients, we re-analyze associations between the application of radiotherapy and disease-related and non-related survival. Inverse-probability-of-treatment-weighting (IPTW) and PS stratification are applied after multiple imputation by chained equation (MICE). Methodological issues are described in detail. Interpretation of the results and methodological limitations are discussed

    Icb-1 gene polymorphism rs1467465 is associated with susceptibility to ovarian cancer

    Get PDF
    In this study, we tested the hypothesis that single nucleotide polymorphisms (SNPs) of differentiation-associated human gene icb-1 (C1orf38) may be associated with ovarian cancer susceptibility. For this purpose, we compared the genotype and allele frequencies of the SNPs rs1467465 and rs12048235 in a group of 184 ovarian cancer patients with a control group of 184 age- and gender-matched women without any malignancy. Genotype-phenotype association revealed that A allele of SNP rs1467465 was more frequent in ovarian cancer patients than in the control group (0.40 vs. 0.33, OR 1.37, 95% CI 1.013-1.853, p = 0.04). After analysis of allele positivity we observed that A-positive genotypes were more frequent in the ovarian cancer group (0.65 vs. 0.53, OR 1.63, 95% CI 1.072-2.483, p = 0.02). Furthermore, the heterozygous genotype of rs1467465 was found to be more frequent in the patients group (0.50 vs. 0.41, OR 1.63, 95% CI 1.045-2.045, p = 0.03). No significant results were obtained with regard to SNP rs1204823. Our data suggest, that SNP rs1467465 of human gene icb-1 might affect susceptibility to ovarian cancer
    corecore